Skip to main content
Log in

Existence and computational results to Volterra–Fredholm integro-differential equations involving delay term

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The present article is concerned with deriving necessary conditions for the existence theory of solution to a class of delay Fredholm–Volterra integro-differential equations using fixed point approach. Also via the use of the Haar collocation method, a numerical scheme is established. With the help of the mentioned method the considered problem is transformed into a system of algebraic equations which is then solved for the required results by using Gauss elimination algorithm. Further the necessary conditions required for a numerical technique to be held like maximum absolute errors, efficacy and comparison with exact solution as well as with the results of other numerical schemes are performed by taking various numbers of collocation points. The obtained results are compared with the results of the Spline functions algorithm for the concerned problems. Various pertinent test problems are given to testify the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdeljawad T, Amin R, Shah K, Al-Mdallal Q, Jarad F (2020) Efficient sustainable algorithm for numerical solutions of systems of fractional order differential equations by Haar wavelet collocation method. Alex Eng J 59(4):2391–2400

    Article  Google Scholar 

  • Aleem M, Asjad MI, Ahmadian A, Salimi M, Ferrara M (2020) Heat transfer analysis of channel flow of MHD Jeffrey fluid subject to generalized boundary conditions. Eur Phys J Plus 135:1–15

    Article  Google Scholar 

  • Alqarni MM, Amin R, Shah K, Nazir S, Awais M, Mahmoud EE (2021) Solution of third order linear and nonlinear boundary value problems of integro-differential equations using Haar wavelet method. Results Phys 25:104176

    Article  Google Scholar 

  • Amin R, Shah K, Asif M, Khan I (2021a) A computational algorithm for the numerical solution of fractional order delay differential equations. Appl Math Comput 402:125863

    MathSciNet  MATH  Google Scholar 

  • Amin R, Alshahrani B, Aty AH, Shah K, Deebani W (2021b) Haar wavelet method for solution of distributed order time-fractional differential equations. Alex Eng J 60(3):3295–3303

    Article  Google Scholar 

  • Amin R, Ahmad H, Shah K, Hafeez MB, Sumelka W (2021c) Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method. Chaos Solitons Fractals 151:111252

    Article  MathSciNet  Google Scholar 

  • Amin R, Shah K, Asif M, Khan I, Ullah F (2021d) An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet. J Comput Appl Math 381:113028

    Article  MathSciNet  MATH  Google Scholar 

  • Amin R, Nazir S, Magarino IG (2020) Efficient sustainable algorithm for numerical solution of nonlinear delay Fredholm-Volterra integral equations via Haar wavelet for dense sensor networks in emerging telecommunications, Transactions on Emerging Telecommunications Technologies 2020: e3877

  • Amin R, Nazir S, Magrino IG A collocation method for numerical solution of nonlinear delay integro-differential equations for wireless sensor network and internet of things. Sensors 20. https://doi.org/10.3390/s20071962

  • Arikoglu A, Ozkol I (2008) Solutions of integral and integro-differential equation systems by using differential transform method. Comput Math Appl 56:2144–2417

    Article  MathSciNet  MATH  Google Scholar 

  • Asjad MI, Aleem M, Ahmadian A, Salahshour S, Ferrara M (2020) New trends of fractional modeling and heat and mass transfer investigation of (SWCNTs and MWCNTs)-CMC based nanofluids flow over inclined plate with generalized boundary conditions. Chin J Phys 66:497–516

    Article  MathSciNet  Google Scholar 

  • Ayad A (2001) The numerical solution of first order delay integro-differential equations by spline functions. Int J Comp Math 77:125–134

    Article  MathSciNet  MATH  Google Scholar 

  • Ayad A (2001) The numerical solution of first order delay integro-differential equations by spline functions. Int J Comput Math 77(1):125–134

    Article  MathSciNet  MATH  Google Scholar 

  • Aziz I, Amin R (2016) Numerical solution of a class of delay differential and delay partial differential equations via haar wavelet. Appl Math Model 40:10286–10299

    Article  MathSciNet  MATH  Google Scholar 

  • Aznam SM, Chowdhury M (2018) Generalized haar wavelet operational matrix method for solving hyperbolic heat conduction in thin surface layers. Results Phys 11:243–252

    Article  Google Scholar 

  • Bellour A, Bousselsal M (2014) A taylor collocation method for solving delay integral equations. Numer Algorithms 65(4):843–857

    Article  MathSciNet  MATH  Google Scholar 

  • Biazar J, Babolian E, Islam R (2003) Solution of a system of volterra integral equations of the first kind by adomian method. Appl Math Comput 139:249–258

    MathSciNet  MATH  Google Scholar 

  • Cardoso AA, Vieira FH (2018) Adaptive estimation of haar wavelet transform parameters applied to fuzzy prediction of network traffic. Signal Process 151:155–159

    Article  Google Scholar 

  • Chiavassa G, Guichaoua M, Liandrat J (2002) Two adaptive wavelet algorithms for nonlinear parabolic partial differential equations. Comp Fluids 31:467–480

    Article  MATH  Google Scholar 

  • Dai Q, Cao Q, Chen Y (2018) Frequency analysis of rotating truncated conical shells using the haar wavelet method. Appl Math Model 57:603–613

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M (2006) Solution of a partial integro-differential equation arising from viscoelasticity. Int J Comput Math 235:123–129

    Article  MathSciNet  MATH  Google Scholar 

  • Gulsu M, Sezer M (2006) Taylor collocation method for solution of systems of high-order linear Fredholm-Volterra integro-differential equations. Int J Comput Math 83(4):429–448

    Article  MathSciNet  MATH  Google Scholar 

  • Khashan M, Motawi R. Amin, Muhammed IS (2019) A new algorithm for fractional Riccati type differential equations by using Haar wavelet. Math 7(6):545

    Article  Google Scholar 

  • Lakestani M, Saray BN, Dehghan M (2011) Numerical solution for the weakly singular fredholm integro-differential equations using Legendre multiwavelets. J Comput Appl Math 235:3291–3303

    Article  MathSciNet  MATH  Google Scholar 

  • Lakestani M, Jokar M, Dehghan M (2011) Numerical solution of nth-order integro-differential equations using trigonometric wavelets. Math Methods Appl Sci 34:1317–1329

    Article  MathSciNet  MATH  Google Scholar 

  • Lepik U, Lepik H (2014) Haar wavelets with applications. Springer, New York

    Book  MATH  Google Scholar 

  • Li Y-X, Muhammad T, Bilal M, Khan MA, Ahmadian A, Pansera BA (2021) Fractional simulation for Darcy-Forchheimer hybrid nanoliquid flow with partial slip over a spinning disk. Alex Eng J 60:4787–4796

    Article  Google Scholar 

  • Majak J, Shvartsman B, Kirs M, Pohlak M, Herranen H (2015a) Convergence theorem for the Haar wavelet based discretization method. Comp Struct 126:227–232

    Article  Google Scholar 

  • Majak J, Shvartsman B, Karjust K, Mikola M, Haavajoe A, Pohlak M (2015b) On the accuracy of the haar wavelet discretization method. Comp Part B 80:321–327

    Article  Google Scholar 

  • Majak J, Pohlak M, Karjust K, Eerme M, Kurnitski J, Shvartsman BS (2018) New higher order haar wavelet method: Application to FGM structures. Compos Struct 201:72–78

    Article  Google Scholar 

  • Maleknejad K, Aghazadeh N (2011) Numerical solutions of volterra integral equations of the second kind with convolution kernel by using taylor-series expansion method. Appl Math Comput 161:915–922

    MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Kajani MT (2004) Solving linear integro-differential equation system by galerkin methods with hybrid functions. Appl Math Comput 159:603–612

    MathSciNet  MATH  Google Scholar 

  • Nazir S, Shahzad S, Wirza R, Amin R, Ahsan M, Mukhtar N, Magrino IG, Lloret J (2019) Birthmark based identification of software piracy using Haar wavelet. Math Comput Simul 166:144–154

    Article  MathSciNet  MATH  Google Scholar 

  • O’Regan D (1997) Existence theory for nonlinear ordinary differential equations (Vol. 398). Springer Science & Business Media

  • Razak MA, Rathinasamy N (2018) Haar wavelet for solving the inverse point kinetics equations and estimation of feedback reactivity coefficient under background noise. Nucl Eng Des 335:202–209

    Article  Google Scholar 

  • Ren Y, Qin Y, Sakthivel R (2010) Existence results for fractional order semilinear integro-differential evolution equations with infinite delay. Integr Eqn Oper Theory 67(1):33–49

    Article  MathSciNet  MATH  Google Scholar 

  • Rihan FA, Doha EH, Hassan MI, Kamel NM (2009) Numerical treatments for Volterra delay integro-differential equations. Comp Methods Appl Math 3:292–308

    Article  MathSciNet  MATH  Google Scholar 

  • Saberi-Nadjafi J, Tamamgar M (2008) The variational iteration method: a highly promising method for solving the system of integro differential equations. Comput Math Appl 56:346–351

    Article  MathSciNet  MATH  Google Scholar 

  • Sahin N, Yuzbasi S, Gulsu M (2011) A collocation approach for solving systems of linear volterra integral equations with variable coefficients. Comput Math Appl 62:755–769

    Article  MathSciNet  MATH  Google Scholar 

  • Santos JP, Arjunan MM, Cuevas C (2011) Existence results for fractional neutral integro-differential equations with state-dependent delay. Comp Math Appl 62(3):1275–1283

    Article  MathSciNet  MATH  Google Scholar 

  • Senol M, Atpinar S, Zararsiz Z, Salahshour S, Ahmadian A (2019) Approximate solution of time-fractional fuzzy partial differential equations. Comput Appl Math 38:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Singh R, Garg H, Guleria V (2019) Haar wavelet collocation method for lane-emden equations with dirichlet, neumann and neumann-robin boundary conditions. J Comput Appl Math 346:150–161

    Article  MathSciNet  MATH  Google Scholar 

  • Singh J, Ahmadian A, Rathore S, Kumar D, Baleanu D, Salimi M, Salahshour SI (2021) An efficient computational approach for local fractional Poisson equation in fractal media. Numer Methods Part Differ Equ 37:1439–1448

    Article  MathSciNet  Google Scholar 

  • Siraj-ul-Islam I, Aziz F (2014) Khan, A new method based on Haar wavelet for the numerical solution of two-dimentional nonlinear integral equations. J Comp Appl Math 272:70–80

    Article  MATH  Google Scholar 

  • Smart DR (1980) Fixed Point Theorems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Sorkun HH, Yalcinbas S (2021) Approximate solutions of linear volterra integral equation systems with variable coefficients. Appl Math Model 34:3451–3464

    Article  MathSciNet  MATH  Google Scholar 

  • Vampa V, Martin MT, Serrano E (2010) A hybrid method using wavelets for the numerical solution of boundary value problems. Appl Math Comput 217:3355–3367

    MathSciNet  MATH  Google Scholar 

  • Wazwaz AM (2015) A first course in integral equations, World Scientific, London

  • Wu JL (2009) A wavelet operational method for solving fractional partial differential equations numerically. Appl Math Comput 214:31–40

    MathSciNet  MATH  Google Scholar 

  • Yusufoglu E (2008) A homotopy perturbation algorithm to solve a system of Fredholm-Volterra type integral equations. Math Comput Model 47:1099–1107

    Article  MathSciNet  MATH  Google Scholar 

  • Yuzbasi S, Sahin N, Sezer M (2011) Numerical solutions of systems of linear Fredholm integro-differential equations with bessel polynomial bases. Comput Math Appl 61:3079–3096

    Article  MathSciNet  MATH  Google Scholar 

  • Yuzbasi S, Sezer M, Kemanci B (2013) Numerical solutions of integro-differential equations and application of a population model with an improved Legendre method. Appl Math Model 37:2086–2101

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We all authors are very thankful to the reviewers for their useful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed this manuscript and approved the final version.

Corresponding authors

Correspondence to Ali Ahmadian or Mehdi Salimi.

Ethics declarations

Availability of Data and Materials

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

Funding

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Communicated by Hui Liang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, R., Ahmadian, A., Alreshidi, N.A. et al. Existence and computational results to Volterra–Fredholm integro-differential equations involving delay term. Comp. Appl. Math. 40, 276 (2021). https://doi.org/10.1007/s40314-021-01643-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01643-y

Keywords

Mathematics Subject Classification

Navigation