Skip to main content
Log in

A comparative study on iterative algorithms of almost contractions in the context of convergence, stability and data dependency

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new iterative algorithm and analyze it in detail inasmuch as convergence, stability, and data dependency for the class of almost contraction mappings. We also consider another iterative algorithm called \(F^{*}\) iterative algorithm proposed by Ali et al. (Comp. Appl. Math. 39, 267 (2020)) and derive some new algorithms from this with the aim of giving an affirmative answer to an open question raised by the same authors. Our results considerably improve the corresponding results in Ali et al. (Comp. Appl. Math. 39, 267 (2020)). We submit some non-trivial numerical examples to illustrate the robustness, feasibility, and effectiveness of our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas M, Vetro P, Khan SH (2010) On fixed points of Berindes contractive mappings in cone metric spaces. Carpathian J Math 26(2):121–133

    MathSciNet  MATH  Google Scholar 

  • Adeyeye O, Omar Z (2017) Solving nonlinear fourth-order boundary value problems using a numerical approach: th-step block method. Int J Differ Equ 2:1

    MathSciNet  MATH  Google Scholar 

  • Ali F, Ali J (2020) Convergence, stability, and data dependence of a new iterative algorithm with an application. Comp Appl Math 39:267. https://doi.org/10.1007/s40314-020-01316-2

    Article  MathSciNet  MATH  Google Scholar 

  • Ali J, Jubair M, Ali F (2020) Stability and convergence of F iterative scheme with an application to the fractional differential equation. Eng Comput. https://doi.org/10.1007/s00366-020-01172-y

    Article  Google Scholar 

  • Ali J, Ali F (2020) A new iterative scheme for approximating fixed points with an application to a delay differential equation. J Nonlinear Convex Anal 21:2151–2163

    MathSciNet  MATH  Google Scholar 

  • Ali F, Ali J, Uddin I (2021) A novel approach for the solution of BVPs via Green’s function and fixed point iterative method. J Appl Math Comput 66:167–181

    MathSciNet  MATH  Google Scholar 

  • Altun I, Acar Ö (2012) Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topol Appl 159(10–11):2642–2648

    MathSciNet  MATH  Google Scholar 

  • Berinde V (2003) On the approximation of fixed points of weak contractive mappings. Carpathian J Math 19(1):7–22

    MathSciNet  MATH  Google Scholar 

  • Berinde V (2004) Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal Forum 9(1):43–53

    MathSciNet  MATH  Google Scholar 

  • Berinde V (2004) Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Fixed Point Theory Appl 2:97–105

    MathSciNet  MATH  Google Scholar 

  • Berinde V (2016) On a notion of rapidity of convergence used in the study of fixed point iterative methods. Creat Math Inform 25:29–40

    MathSciNet  MATH  Google Scholar 

  • Brezinski C (2000) Convergence acceleration during the 20th century. J Comput Appl Math 122(1–2):1–21

    MathSciNet  MATH  Google Scholar 

  • Cardinali T, Rubbioni T (2010) A generalization of the Caristi fixed point theorem in metric spaces. Fixed Point Theory 11:3–10

    MathSciNet  MATH  Google Scholar 

  • Chabert JLA (2012) History of algorithms: from the pebble to the microchip. Springer Science & Business Media, Berlin

    Google Scholar 

  • Chatterjea SK (1972) Fixed point theorems. C R Acad Bulg Sci 25:727–730

    MATH  Google Scholar 

  • Ertürk M, Khan AR, Karakaya V, Gürsoy F (2017) Convergence and data dependence results for hemicontractive operators. J Nonlinear Convex Anal 18:697–708

    MathSciNet  MATH  Google Scholar 

  • Garodia C, Uddin I (2020) A new fixed-point algorithm for finding the solution of a delay differential equation. AIMS Math 5(2020):3182–3200

    MathSciNet  Google Scholar 

  • Gürsoy F, Eksteen JJA, Khan AR, Karakaya V (2019) An iterative method and its application to stable inversion. Soft Comput 23:7393–7406

    MATH  Google Scholar 

  • Gürsoy F (2016) A Picard-S iterative method for approximating fixed point of weak-contraction mappings. Filomat 30:2829–2845

    MathSciNet  MATH  Google Scholar 

  • Gürsoy F, Khan AR, Ertürk M, Karakaya V (2020) Coincidences of nonself operators by a simpler algorithm. Numer Funct Anal Optim 41:192–208

    MathSciNet  MATH  Google Scholar 

  • Gürsoy F, Khan AR, Fukhar-ud-din H (2017) Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces. Hacet J Math Stat 46:373–388

    MathSciNet  MATH  Google Scholar 

  • Gürsoy F, Ertürk M, Dikmen M (2019) Some fixed point results for quasi-strictly contractive operators in hyperbolic spaces. J Nonlinear Convex Anal 20:2281–2295

    MathSciNet  MATH  Google Scholar 

  • Gürsoy F, Khan AR, Ertürk M, Karakaya V (2018) Convergence and data dependency of normal\(-S\) iterative method for discontinuous operators on Banach space. Numer Funct Anal Optim 2(39):322–345

    MathSciNet  MATH  Google Scholar 

  • Gürsoy F, Khan AR, Ertürk M, Karakaya V (2019) Weak \( w^{2}-\)stability and data dependence of Mann iteration method in Hilbert spaces. Rev R Acad Cienc Exactas Fís. Nat. Ser. A Mat. RACSAM 113:11–20

    MathSciNet  MATH  Google Scholar 

  • Hacıoğlu E, Gürsoy F, Maldar S, Atalan Y, Milovanović GV (2021) Iterative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning. Appl Num Math 167:143–172

    MathSciNet  MATH  Google Scholar 

  • Ishikawa S (1974) Fixed points by a new iteration method. Proc Am Math Soc 44:147–150

    MathSciNet  MATH  Google Scholar 

  • Kannan R (1968) Some results on fixed points. Bull Calcutta Math Soc 10:71–76

    MathSciNet  MATH  Google Scholar 

  • Karakaya V, Atalan Y, Doğan K, Bouzara NH (2017) Some fixed point results for a new three steps iteration process in Banach spaces. Fixed Point Theory 18(2):625–640

    MathSciNet  MATH  Google Scholar 

  • Karakaya V, Gürsoy F, Ertürk M (2016) Some convergence and data dependence results for various fixed point iterative methods. Kuwait J Sci 43:112–128

    MathSciNet  MATH  Google Scholar 

  • Khan AR, Kumar V, Hussain N (2014) Analytical and numerical treatment of Jungck-type iterative schemes. Appl Math Comput 231:521–535

    MathSciNet  MATH  Google Scholar 

  • Khan AR, Gürsoy F, Kumar V (2016) Stability and data dependence results for Jungck Khan iterative scheme. Turk J Math 40:631–640

    MathSciNet  MATH  Google Scholar 

  • Khan AR, Fukhar-ud-din H, Gürsoy F (2018) Rate of convergence and data dependency of almost Prešić contractive operators. J Nonlinear Convex Anal 19:1069–1081

    MathSciNet  MATH  Google Scholar 

  • Khan AR, Gürsoy F, Karakaya V (2016) Jungck Khan iterative scheme and higher convergence rate. Int J Comput Math 93:2092–2105

    MathSciNet  MATH  Google Scholar 

  • Khatoon S, Uddin I, Ali J, George R (2021) Common fixed points of two-nonexpansive mappings via a faster iteration procedure. J Funct Spaces 8:9913540

    MathSciNet  MATH  Google Scholar 

  • Khatoon S, Uddin I, Baleanu D (2021) Approximation of fixed point and its application to fractional differential equation. J Appl Math Comput 66:507–525

    MathSciNet  MATH  Google Scholar 

  • Khuri SA, Sayfy A, Zaveri A (2017) A new iteration method based on Green’s functions for the solution of PDEs. Int J Appl Comput Math 3(4):3091–3103

    MathSciNet  MATH  Google Scholar 

  • Krasnoselskij MA (1955) Two observations about the method of successive approximations. Uspehi Math Nauk 10:123–127

    Google Scholar 

  • Maldar S, Gürsoy F, Atalan Y, Abbas M (2021) On a three-step iteration process for multivalued Reich-Suzuki type \(\alpha -\) nonexpansive and contractive mappings. J Appl Math Comput. https://doi.org/10.1007/s12190-021-01552-7

    Article  Google Scholar 

  • Mann WR (1953) Mean value methods in iteration. Proc Am Math Soc 4:506–510

    MathSciNet  MATH  Google Scholar 

  • Noor MA (2000) New approximation schemes for general variational inequalities. J Math Anal Appl 251:217–229

    MathSciNet  MATH  Google Scholar 

  • Osilike MO (1995) Stability results for fixed point iteration procedures. J Niger Math Soc 14/15:17–29(1995/1996)

  • Picard E (1890) Mémoire sur la théorie des é quations aux dérivées partielles et la méthode des approximations successives. Journ de Math 4(6):145–210

    MATH  Google Scholar 

  • Phuengrattana W, Suantai S (2013) Comparison of the rate of convergence of various iterative methods for the class of weak contractions in Banach spaces. Thai J Math 11(1):217–226

    MathSciNet  MATH  Google Scholar 

  • Samet B, Vetro C (2011) Berinde mappings in orbitally complete metric spaces. Chaos Solitons Fractals 44(12):1075–1079

    MathSciNet  MATH  Google Scholar 

  • Thenmozhi S, Marudai M (2021) Solution of nonlinear boundary value problem by S-iteration. J Appl Math Comput 2:1–22

    Google Scholar 

  • Timiş I (2010) On the weak stability of Picard iteration for some contractive type mappings. Annal Uni Craiova Math Comput Sci Series 37:106–114

    MathSciNet  MATH  Google Scholar 

  • Zamfirescu T (1972) Fix point theorems in metric spaces Arch. Mathematik (Basel) 23:292–298

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emirhan Hacıoğlu.

Additional information

Communicated by Baisheng Yan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacıoğlu, E. A comparative study on iterative algorithms of almost contractions in the context of convergence, stability and data dependency. Comp. Appl. Math. 40, 282 (2021). https://doi.org/10.1007/s40314-021-01671-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01671-8

Keywords

Mathematics Subject Classification

Navigation