Skip to main content
Log in

Compact ETDRK scheme for nonlinear dispersive wave equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a fourth-order scheme is presented for nonlinear dispersive wave equations. The scheme uses the fourth-order compact finite-difference method for discretization in space and the fourth-order exponential time-differencing Runge–Kutta (ETDRK) method for the temporal direction, respectively. The Cauchy integral formula takes effect on stabilizing the fourth-order ETDRK method, and deals with nondiagonal large sparse coefficient matrix which has complex eigenvalues tend to zero. It can be observed by numerical experiments that the numerical method is performed efficiently for the solitary wave profile of the Rosenau–KdV–RLW equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Apolinar-Fernndez A, Ramos JI (2018) Numerical solution of the generalized, dissipative KdV-RLW-Rosenau equation with a compact method. Commun. Nonlinear Sci. Numer. Simul 60:165–183

    Article  MathSciNet  Google Scholar 

  • Bahadir AR (2005) Exponential finite-difference method applied to Korteweg-de Vries equation for small times. Appl. Math. Comput. 160(3):675–682

    MathSciNet  MATH  Google Scholar 

  • Cai J, Liang H, Zhang C (2018) Efficient high-order structure-preserving methods for the generalized Rosenau-type equation with power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 59:122–131

    Article  MathSciNet  Google Scholar 

  • Cox SM, Matthews PC (2002) Exponential time differencing for stiff systems. J. Comput. Phys. 176(2):430–455

    Article  MathSciNet  Google Scholar 

  • Cui Y, Mao DK (2007) Numerical method satisfying the first two conservation laws for the kortewegde vries equation. J. Comput. Phys. 227(1):376–399

    Article  MathSciNet  Google Scholar 

  • Du Q, Zhu W (2005) Analysis and applications of the exponential time differencing schemes and their contour integration modifications. Bit Numer. Math. 45(2):307–328

    Article  MathSciNet  Google Scholar 

  • Ghiloufi A, Omrani K (2017) New conservative difference schemes with fourth-order accuracy for some model equation for nonlinear dispersive waves. Numer. Methods Part. Differ. Equ. 34(2):451–500

    Article  MathSciNet  Google Scholar 

  • Gürarslan G (2010) Numerical modelling of linear and nonlinear diffusion equations by compact finite difference method. Appl. Math. Comput. 216(8):2472–2478

    MathSciNet  MATH  Google Scholar 

  • Hochbruck M, Ostermann A (2005) Explicit exponential Runge–Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43(3):1069–1090

    Article  MathSciNet  Google Scholar 

  • Hu J, Wang Y (2013) A high-accuracy linear conservative difference scheme for Rosenau-RLW equation. Math. Prob. Eng. 2:841–860

    MathSciNet  MATH  Google Scholar 

  • Kassam A, Trefethen LN (2005) Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26(4):1214–1233

    Article  MathSciNet  Google Scholar 

  • Korteweg DJ, De Vries G (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. Ser. 1 39(240):422–443

    Article  MathSciNet  Google Scholar 

  • Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1):16–42

    Article  MathSciNet  Google Scholar 

  • Li J , Y T Chen (2008) Computational partial differential equations using MATLAB. CRC Press

  • Li J, Visbal MR (2006) High-order compact schemes for nonlinear dispersive waves. J. Sci. Comput. 26(1):1–23

    Article  MathSciNet  Google Scholar 

  • Pan X, Zhang L (2012) On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation. Appl Mathe Model 36(8):3371–3378

    Article  MathSciNet  Google Scholar 

  • Park MA (1990) On the Rosenau equation. Comput Appl Math 9(2):145–152

    MathSciNet  MATH  Google Scholar 

  • Peregrine DH (1966) Calculations of the development of an undular bore. J Fluid Mech 25(02):321–330

    Article  Google Scholar 

  • Peregrine DH (1967) Long waves on a beach. J Fluid Mech 27(4):815–827

    Article  MathSciNet  Google Scholar 

  • Qiu Y, Chen W, Nie Q (2019) A hybrid method for stiff reaction–diffusion equations. Disc Cont Dyn Syst Ser B 24(12):6387

    MathSciNet  MATH  Google Scholar 

  • Razborova P, Triki H, Biswas A (2013) Perturbation of dispersive shallow water waves. Ocean Eng 63(4):1–7

    Article  Google Scholar 

  • Rosenau P (1986) A quasi-continuous description of a nonlinear transmission line. Physica Scripta 34:827–829

    Article  Google Scholar 

  • Rosenau P (1988) Dynamics of dense discrete systems. Progress Theor Phys 79:1028–1042

    Article  Google Scholar 

  • Sari M, Gürarslan G (2009) A sixth-order compact finite difference scheme to the numerical solutions of Burgers equation. Appl Math Comput 208(2):475–483

    MathSciNet  MATH  Google Scholar 

  • Soni V, Roussel O, Hadjadj A (2017) On the accuracy and efficiency of point-value multiresolution algorithms for solving scalar wave and Euler equations. J Comput Appl Math 323:159–175

    Article  MathSciNet  Google Scholar 

  • Thacher HC, Henrici P (1974) Wiley, Applied and computational complex analysis

  • Trefethen LN (2000) Spectral methods in MATLAB (Software, Environments, Tools). SIAM 29(1):209–228

    Google Scholar 

  • Wang X, Dai W (2017) A three-level linear implicit conservative scheme for the Rosenau-KdV-RLW equation. J Comput Appl Math 330:295–306

    Article  MathSciNet  Google Scholar 

  • Wang YM, Zhang HB (2009) Higher-order compact finite difference method for systems of reaction–diffusion equations. J Comput Appl Math 233(2):502–518

    Article  MathSciNet  Google Scholar 

  • Wang X, Dai W (2019) A conservative fourth-order stable finite difference scheme for the generalized Rosenau-KdV equation in both 1D and 2D. J Comput Appl Math:310–331

  • Wongsaijai B, Poochinapan K (2014) A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation. Appl Math Comput 245:289–304

    MathSciNet  MATH  Google Scholar 

  • Wongsaijai B, Mouktonglang T, Sukantamala N, Poochinapan K (2019) Compact structure-preserving approach to solitary wave in shallow water modeled by the Rosenau-RLW equation. Appl Math Comput 340:84–100

    MathSciNet  MATH  Google Scholar 

  • Yee HC, SjöGreen B, Hadjadj A (2012) Comparative study of three high order schemes for LES of temporally evolving mixing layers. Commun Comput Phys 12(5):1603–1622

    Article  Google Scholar 

  • Zhao J, Corless RM (2006) Compact finite difference method for integro-differential equations. Appl Math Comput 177(1):271–288

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Qiu.

Additional information

Communicated by Abdellah Hadjadj.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research is partly supported by NSFC Grant 12071392.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmat, M., Qiu, J. Compact ETDRK scheme for nonlinear dispersive wave equations. Comp. Appl. Math. 40, 286 (2021). https://doi.org/10.1007/s40314-021-01687-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01687-0

Keywords

AMS Subject Classification