Skip to main content
Log in

Concave (LM)-fuzzy interior operators and (LM)-fuzzy hull operators

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the notions of (concave) (LM)-fuzzy interior operators are introduced. It is proved that the category of (LM)-fuzzy concave spaces and the category of concave (LM)-fuzzy interior spaces is isomorphic, and there is a Galois correspondence between the category of (LM)-fuzzy concave spaces and the category of (LM)-fuzzy interior spaces. In addition, (LM)-fuzzy hull operators proposed by Sayed et al. (Filomat 33(13):4151–4163, 2019) are further studied. Particularly, some results in Sayed et al. (2019) are corrected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adáamek J, Herrlich H, Strecker GE (1990) Abstract and concrete categories. Wiley, New York

    Google Scholar 

  • Goguen JA (1967) \(L\)-fuzzy sets. J Math Anal Appl 18:145–174

    Article  MathSciNet  Google Scholar 

  • Jin Q, Li L-Q (2016) On the embedding of \(L\)-convex spaces in stratified L-convex spaces. SpringerPlus 5(1):1610

    Article  MathSciNet  Google Scholar 

  • Lassak M (1977) On metric \(B\)-convexity for which diameters of any set and its hull are equal. Bull Acad Pol Sci Ser Sci Math Astron Phys 25:969–975

    MathSciNet  MATH  Google Scholar 

  • Li LQ (2017) On the category of enriched \((L, M)\)-convex spaces. J Intell Fuzzy Syst 33:3209–3216

    Article  Google Scholar 

  • Li E, Shi F-G (2018) Some properties of \(M\)-fuzzifying convexities induced by \(M\)-orders. Fuzzy Sets Syst 350:41–54

    Article  MathSciNet  Google Scholar 

  • Li Q-H, Huang H-L, Xiu Z-Y (2019) Degrees of special mappings in the theory of \(L\)-convex spaces. J Intell Fuzzy Syst 37(2):2265–2274

    Article  Google Scholar 

  • Liu Y-M, Luo M-K (1997) Fuzzy topology. World Scientific Publishing, Singapore

    MATH  Google Scholar 

  • Maruyama Y (2009) Lattice-valued fuzzy convex geometry. RIMS Kokyuroku 1641:22–37

    Google Scholar 

  • Pang B (2020) Convergence structures in \(M\)-fuzzifying convex spaces. Quaest Math 43(11):1541–1561

    Article  MathSciNet  Google Scholar 

  • Pang B, Shi F-G (2017) Subcategories of the category of \(L\)-convex spaces. Fuzzy Sets Syst 313:61–74

    Article  MathSciNet  Google Scholar 

  • Pang B, Shi F-G (2018) Strong inclusion orders between \(L\)-subsets and its applications in \(L\)-convex spaces. Quaest Math 41(8):1021–1043

    Article  MathSciNet  Google Scholar 

  • Pang B, Shi F-G (2019) Fuzzy counterparts of hull operators and interval operators in the framework of \(L\)-convex spaces. Fuzzy Sets Syst 369:20–39

    Article  MathSciNet  Google Scholar 

  • Pang B, Xiu Z-Y (2019) An axiomatic approach to bases and subbases in \(L\)-convex spaces and their applications. Fuzzy Sets Syst 369:40–56

    Article  MathSciNet  Google Scholar 

  • Pang B, Zhao Y (2016) Characterization of \(L\)-convex spaces. Iran J Fuzzy Syst 13(4):51–61

    MathSciNet  MATH  Google Scholar 

  • Rodabaugh SE (1997) Powerset operator based foundation for point-set lattice-theoretic (poslat) fuzzy set theories and topologies. Quaest Math 20(3):463–530

    Article  MathSciNet  Google Scholar 

  • Rosa MV (1994a) A study of fuzzy convexity with special reference to separation properties. Ph.D. Thesis, Cochin University of Science and Technology, Kerala, India

  • Rosa MV (1994b) On fuzzy topology fuzzy convexity spaces and fuzzy local convexity. Fuzzy Sets Syst 62:97–100

    Article  MathSciNet  Google Scholar 

  • Sayed OR, El-Sanousy E, Raghp Sayed YH (2019) On \((L, M)\)-fuzzy convex structures. Filomat 33(13):4151–4163

    Article  MathSciNet  Google Scholar 

  • Shen C, Shi F-G (2020) Characterizations of \(L\)-convex spaces via domain theory. Fuzzy Sets Syst 380(1):44–63

    Article  MathSciNet  Google Scholar 

  • Shi F-G, Li E-Q (2015) The restricted hull operator of \(M\)-fuzzifying convex structures. J Intell Fuzzy Syst 30:409–421

    Article  Google Scholar 

  • Shi F-G, Xiu Z-Y (2017) \((L, M)\)-fuzzy convex structures. J Nonlinear Sci Appl 10:3655–3669

    Article  MathSciNet  Google Scholar 

  • Soltan VP (1983) d-Convexity in graphs, (Russian). Dokl Akad Nauk SSSR 272:535–537

    MathSciNet  Google Scholar 

  • Soltan VP (1984) Introduction to the axiomatic theory of convexity, (Russian). Shtiinca, Kishinev

    Google Scholar 

  • Šostak AP (1985) On a fuzzy topological structure Rend. Circ Mat Palermo 11:89–103

    MATH  Google Scholar 

  • Van de Vel MLJ (1993) Theory of convex structures. North-Holland mathematical library. North-Holland Publishing CO., Amsterdam

    MATH  Google Scholar 

  • Van Mill J (1977) Supercompactness and Wallman spaces. Mathematical centre tracts. Mathematisch Centrum, Amsterdam

    MATH  Google Scholar 

  • Varlet JC (1975) Remarks on distributive lattices. Bull Acad Pol Sci Ser Sci Math Astron Phys 23:1143–1147

    MathSciNet  MATH  Google Scholar 

  • Wang K, Pang B (2019) Coreflectivities of \((L, M)\)-fuzzy convex structures and \((L, M)\)-fuzzy cotopologies in \((L, M)\)-fuzzy closure systems. J Intell Fuzzy Syst 37(3):3751–3761

    Article  Google Scholar 

  • Wang K, Shi F-G (2018) \(M\)-fuzzifying topological convex spaces. Iran J Fuzzy Syst 15(6):159–174

  • Wu X-Y, Li E-Q (2019) Category and subcategories of \((L, M)\)-fuzzy convex spaces. Iran J Fuzzy Syst 16(1):173–190

    MathSciNet  MATH  Google Scholar 

  • Xiu Z-Y, Li Q-G (2019a) Relations among \((L, M)\)-fuzzy convex structures, \((L, M)\)-fuzzy closure systems and \((L, M)\)-fuzzy Alexandrov topologies in a degree sense. J Intell Fuzzy Syst 36:385–396

    Article  Google Scholar 

  • Xiu Z-Y, Li Q-G (2019b) Some characterizations of \((L, M)\)-fuzzy convex spaces. J Intell Fuzzy Syst 37(4):5719–5730

    Article  Google Scholar 

  • Xiu Z-Y, Pang B (2017) \(M\)-fuzzifying cotopological spaces and \(M\)-fuzzifying convex spaces as \(M\)-fuzzifying closure spaces. J Intell Fuzzy Syst 33:613–620

    Article  Google Scholar 

  • Xiu Z-Y, Pang B (2018) Base axioms and subbase axioms in \(M\)-fuzzifying convex spaces. Iran J Fuzzy Syst 15(2):75–87

    MathSciNet  MATH  Google Scholar 

  • Xiu Z-Y, Shi F-G (2017) \(M\)-fuzzifying interval spaces. Iran J Fuzzy Syst 14:145–162

    MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  • Zhao H, Sayed OR, El-Sanousy E, Ragheb Sayed YH, Chen GX (2021a) On separation axioms in \((L, M)\)-fuzzy convex structures. J Intell Fuzzy Syst 40(5):8765–8773

    Article  Google Scholar 

  • Zhao H, Song Q-L, Sayed OR, El-Sanousy E, Ragheb Sayed YH, Chen G-X (2021b) Corrigendum to “On \((L, M)\)-fuzzy convex structures”. Filomat 35(2)

  • Zhong Y, Shi F-G, Zou J-T, Zou C-Y (2019) Degrees of \((L, M)\)-fuzzy convexities. J Intell Fuzzy Syst 36(6):6619–6629

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to express their sincere thanks to the referees and the editors for giving valuable comments which helped to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Zhao.

Additional information

Communicated by Marcos Eduardo Valle.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is partly supported by the National Natural Science Foundation of China (Grant nos. 12171386, 11771263), and the Scientific Research Program Funded by Shaanxi Provincial Education Department (Program no. 18JK0360).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Hu, X., Sayed, O.R. et al. Concave (LM)-fuzzy interior operators and (LM)-fuzzy hull operators. Comp. Appl. Math. 40, 301 (2021). https://doi.org/10.1007/s40314-021-01690-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01690-5

Keywords

Mathematics Subject Classification

Navigation