Skip to main content
Log in

Hilbert solution of fuzzy fractional boundary value problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study two-point boundary value problems which play a vital role in constituting mathematical models for solving real-world problems in which uncertainty pervades. Based on Caputo–Fabrizio approach, we adopt non-singular kernel derivative of order \( \beta \in (1,2]\). To solve fuzzy fractional boundary value problem, we convert it into four equivalent crisp systems in light of the generalized differentiability sense. Then, we solve each of the obtained systems using reproducing kernel functions to build orthonormal set of functions and then to obtain analytical and numerical solutions. A discussion about the accepted type of solution among the four systems is presented in summarized algorithm and carried out in numerical examples. This work proves the simplicity and efficiency of the proposed method, especially when adopting Caputo–Fabrizio derivative. Moreover, the applicability of the reproducing kernel method for solving different types of problems with distinct fractional operators is evident from the appearance of very small error of approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdollahi R, Khastan A, Nieto JJ, Rodrguez-Lpez R (2018) On the linear fuzzy model associated with Caputo-Fabrizio operator. Bound Value Probl 91:1–18

    MathSciNet  Google Scholar 

  • Abu Arqub O, Al-Smadi M (2020) An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator. Phys A Stat Mech Appl 540:123257

    Article  MathSciNet  Google Scholar 

  • Abu Arqub O, Al-Smadi M, Al-Momani M, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20(8):3283–3302

    Article  Google Scholar 

  • Agarwal P, Ramadan M, Osheba HS, Chu YM (2020) Study of hybrid orthonormal functions method for solving second kind fuzzy Fredholm integral equations. Adv Differ Equ 1:1–14

    MathSciNet  MATH  Google Scholar 

  • Ali F, Saqib M, Sheikh I Khan. N (2016) Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walter’s-B fluid model. Eur Phys J Plus (10)131:377, 1-10

  • Al-salti N, Karimov E, Sadarangani K (2016) On a differential equation with caputo-fabrizio fractional derivative of order \( 1<\beta \le 2 \) and application to mass-spring-damper system. Progr Fract Differ 4(2):257–263

    Article  Google Scholar 

  • Al-Smadi M (2021) Fractional residual series for conformable time-fractional Sawada-Kotera-Ito, Lax, and Kaup-Kupershmidt equations of seventh order. Math Methods Appl Sci. https://doi.org/10.1002/mma.7507

  • Al-Smadi M (2018) Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Eng J 9(4):2517–2525

    Article  Google Scholar 

  • Al-Smadi M, Freihat A, Khalil H, Momani S, Khan RA (2017) Numerical multistep approach for solving fractional partial differential equations. Int J Comput Methods 14(3):1750029

    Article  MathSciNet  Google Scholar 

  • Al-Smadi M, Djeddi N, Momani S, Al-Omari S, Araci S (2021) An attractive numerical algorithm for solving nonlinear Caputo–Fabrizio fractional Abel differential equation in a Hilbert space. Adv Differ Equ 2021:271

    Article  MathSciNet  Google Scholar 

  • Al-Smadi M, Abu Arqub O (2019) Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl Math Comput 342:280–294

  • Al-Smadi M, Abu Arqub O, Gaith M (2021) Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework. Math Methods Appl Sci 44(10):8472–8489

  • Al-Smadi M, Abu Arqub O, Hadid S (2020) An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivative. Commun Theor Phys 72(8): 085001

  • Al-Smadi M, Abu Arqub O, Hadid S (2020) Approximate solutions of nonlinear fractional Kundu–Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method. Physica Script 95(10):105205

  • Al-Smadi M, Abu Arqub O, Momani S (2020) Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense. Physica Script 95(7):075218

  • Al-Smadi M, Abu Arqub O, Shawagfeh N, Momani S (2016) Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Appl Math Comput 291:137–148

  • Al-Smadi M, Abu Arqub O, Zeidan D (2021) Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications. Chaos Solit Fract 146:110891

  • Arqub OA, Al-Smadi M (2020) Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. Soft Comput 24(16):12501–12522

    Article  Google Scholar 

  • Atangana A (2016) On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl Math Comput 273:948–956

    MathSciNet  MATH  Google Scholar 

  • Atangana A, Badr S, Alkahtani T (2016) New method of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative. Arab J Geosci 9:8

    Article  Google Scholar 

  • Bataineh M, Alaroud M, Al-Omari S, Agarwal P (2021) Series Representations for Uncertain Fractional IVPs in the Fuzzy Conformable Fractional Sense. Entropy 23(12):1646

    Article  MathSciNet  Google Scholar 

  • Bede B (2006) A note on “two-point boundary value problems associated with non-linear fuzzy differential equations’’. Fuzzy Sets Syst 157:986–989

    Article  MathSciNet  Google Scholar 

  • Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl 1(2):1–13

    Google Scholar 

  • Caputo M, Fabrizio M (2016) Applications of new time and spatial fractional derivatives with exponential kernels 2(1):1–11

  • Caputo M, Fabrizio M (2021) On the singular kernels for fractional derivatives. Some Applications to Partial Differential Equations. Progr Fract Differ Appl 7(2):1–4

  • El Naschie MS (2005) From experimental quantum optics to quantum gravity via a fuzzy Kahler manifold. Chaos Solit Fract 25:969–977

    Article  Google Scholar 

  • Geng F (2009) Solving singular seconde order three-point boundary value problems using reproducing kernel Hilbert space method. Appl Math Comput 215:2095–2102

    MathSciNet  MATH  Google Scholar 

  • Guo M, Xue X, Li R (2003) Impulsive functional differential inclusions and fuzzy population models. Fuzzy Set Syst 138:601–615

  • Hanss M (2005) Applied fuzzy arithmetic: an introduction with engineering applications. Springer, Berlin

    MATH  Google Scholar 

  • Hasan S, Al-Smadi M, El-Ajou A, Momani S, Hadid S, Al-Zhour Z (2021) Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system. Chaos Solit Fract 143:110506

    Article  MathSciNet  Google Scholar 

  • Hukuhara M (1967) Integration des Applications Mesurables dont la Valuer Set un Compact Convex. Funkcialaj Ekvacioj 10:205–223

    MathSciNet  MATH  Google Scholar 

  • Hukuhara M (1967) Integration des Applications Mesurables dont la Valuer Set un Compact Convex. Funkcial, Ekvac 10:205–223

    MathSciNet  MATH  Google Scholar 

  • Hüllermeier E (1997) An approach to modelling and simulation of uncertain dynamical systems. Int J Uncertain Fuzzy Knowl-Based Syst 5:117–137

    Article  MathSciNet  Google Scholar 

  • Kaleva O (1987) Fuzzy differential equations. Fuzzy Sets Syst 24:301–317

    Article  MathSciNet  Google Scholar 

  • Khalid A, Ghaffar A, Naeem MN, Nisar KS, Baleanu D (2021) Solutions of BVPs arising in hydrodynamic and magnetohydro-dynamic stability theory using polynomial and non-polynomial splines. Alex Eng J 60(1):941–953

    Article  Google Scholar 

  • Khalid A, Rehan A, Nisar KS, Abdel-aty AH, Zakarya M (2021) Splines solutions of higher-order BVPs that arise in consistent magnetized force field. Fractals 2240043

  • Khastan A, Nieto JJ (2010) A boundary value problem for second order fuzzy differential equations. Nonlinear Anal 72:3583–3593

    Article  MathSciNet  Google Scholar 

  • Lakshmikantham V, Murty KN, Turner J (2001) Two-point boundary value problems associated with non-linear fuzzy differential equations. Math Inequal Appl 4:527–533

    MathSciNet  MATH  Google Scholar 

  • Li D, Chen M, Xue X (2011) Two-point boundary value problems of uncertain dynamical systems. Fuzzy Set Syst 179:50–61

    Article  MathSciNet  Google Scholar 

  • Mazandarani M, Kamyad AV (2013) Modified fractional Euler method for solving fuzzy fractional initial value problem. Commun Nonlinear sci number Simul 18:12–21

    Article  MathSciNet  Google Scholar 

  • Momani S, Djeddi N, Al-Smadi M, Al-Omari S (2021) Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method. Appl Numer Math 170:418–434

    Article  MathSciNet  Google Scholar 

  • Mustafa G, Ejaz ST, Baleanu D, Ghaffar A, Nisar KS (2020) A subdivision-based approach for singularly perturbed boundary value problem. Adv Differ Equ 2020:282

    Article  MathSciNet  Google Scholar 

  • Nieto JJ, Khastan A, Ivaz K (2009) Numerical solution of fuzzy differential equations under generalized differentiability. Nonlinear Anal Hybrid Syst 3(4):700–707

    Article  MathSciNet  Google Scholar 

  • Podlubny I (2009) Fractional differential equations. New York

  • Rasham T, Shabbir MS, Agarwal P, Momani S (2021) On a pair of fuzzy dominated mappings on closed ball in the multiplicative metric space with applications. Fuzzy Sets Syst. https://doi.org/10.1016/j.fss.2021.09.002

  • Salah A, Khan M, Gondal MA (2013) A novel solution procedure for fuzzy fractional heat equations by homotopy analysis transform method. Neutral Comput Appl 23:269–271

    Article  Google Scholar 

  • Salahshour S, Allahviranloo T, Abbasbandy S (2012) Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun Nonlinear Sci Number Simul 1372–1383

  • Samko SG, Kilbas Marichev OI AA (1993) Fractional integrals and derivatives. Grodon and Breach Sc

  • Shaikh A, Tassaddiq A, Nisar KS, Baleanu D (2019) Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations. Adv Differ Equ 1:1–14

    MathSciNet  MATH  Google Scholar 

  • Sunarto A, Agarwal P, Sulaiman J, Chew JVL (2022) computational approach via half-sweep and preconditioned AOR for fractional diffusion. Intell Autom Soft Comput 31(2):1173–1184

    Article  Google Scholar 

  • Wang W, Cui M, Han B (2008) A new method for solving a class of singular two-point boundary value problems. Appl Math Comput 206:217–227

    MathSciNet  Google Scholar 

  • Wasques VF, Laiate B, Santo Pedro F, Esmi E, Barros LC (2020) Interactive fuzzy fractional differential equation: application on HIV dynamics. Inf Process Manag Uncertain Knowl Based Syst 198–211

  • Wasques VF, Esmi E, Barros LC, Sussner P (2020) The generalized fuzzy derivative is interactive. Inf Sci 519:93–109

    Article  MathSciNet  Google Scholar 

  • Yang Xiao-Jun, Srivastava HM, Machado Tenreiro JA (2015) A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow 20(2):753–756

  • Zambrano-Serrano E, Bekiros S, Platas-Garza MA, Posadas-Castillo C, Agarwal P, Jahanshahi H, Aly AA (2021) On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control. Phys A 578:126100

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Q. Al-Omari.

Additional information

Communicated by Marcos Eduardo Valle.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, S., Harrouche, N., Al-Omari, S.K.Q. et al. Hilbert solution of fuzzy fractional boundary value problems. Comp. Appl. Math. 41, 158 (2022). https://doi.org/10.1007/s40314-022-01857-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01857-8

Keywords

Navigation