Skip to main content

Advertisement

Log in

Stage-structure model for the dynamics of whitefly transmitted plant viral disease: an optimal control approach

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this article, a mathematical model is formulated to study the dynamics of whitefly transmitted viral diseases in plants. Here, the aim is to capture the effect of whitefly’s age-stages on the disease dynamics. The existence of the equilibria, basic reproductive number (\({\mathcal {R}}_0\)), and stability have been studied through qualitative analysis. It is found that the onset of oscillations may occur through Hopf bifurcation in the system. Forward bifurcation is also observed at \({\mathcal {R}}_0=1\). Finally, optimal control theory has been applied for the cost-effectiveness of disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al Basir F, Roy PK, Ray S (2017) Impact of roguing and insecticide spraying on mosaic disease in Jatropha curcas. Control Cybern 46(4):325–344

    MathSciNet  MATH  Google Scholar 

  • Al Basir F, Kyrychko YN, Blyuss KB, Ray S (2021) Effects of vector maturation time on the dynamics of cassava mosaic disease. Bull Math Biol 83(8):1–21

    Article  MathSciNet  Google Scholar 

  • Arnó J, Gabarra R, Liu TX, Simmons AM, Gerling D (2009) Natural enemies of Bemisia tabaci: predators and parasitoids. Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 385–421

    Chapter  Google Scholar 

  • Bailey NT (1975) The mathematical theory of infectious diseases and its applications. Charles Griffin & Company Ltd, Bucks

    MATH  Google Scholar 

  • Byrne FJ, Oetting RD, Bethke JA, Green C, Chamberlin J (2010) Understanding the dynamics of neonicotinoid activity in the management of Bemisia tabaci whiteflies on poinsettias. Crop Prot 29(3):260–266

    Article  Google Scholar 

  • CAB International (2019a) Bemisia tabaci (MEAM1) (silverleaf whitefly). Invasive species compendium detailed coverage of invasive species threatening livelihoods and the environment worldwide. https://www.cabi.org/isc/datasheet/8927

  • CAB International (2019b) Bemisia tabaci (MED) (silverleaf whitefly). Invasive species compendium detailed coverage of invasive species threatening livelihoods and the environment worldwide. https://www.cabi.org/isc/datasheet/112682

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    Article  Google Scholar 

  • Faria M, Wraight SP (2001) Biological control of Bemisia tabaci with fungi. Crop Prot 20(9):767–778

    Article  Google Scholar 

  • Feng Y, Wu Q, Wang S, Chang X, Xie W, Xu B, Zhang Y (2010) Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manage Sci 66(3):313–318

    Article  Google Scholar 

  • Fleming W, Rishel R (1975) Deterministic and stochastic optimal control, vol 1. Springer Verlag, New York

    Book  Google Scholar 

  • Fransen JJ (1994) Bemisia tabaci in the Netherlands; here to stay? Pest Sci 42(2):129–134

    Article  Google Scholar 

  • Gerling D, Horowitz AR, Baumgaertner J (1986) Autecology of Bemisia tabaci. Agric Ecosyst Environ 17(1–2):5–19

    Article  Google Scholar 

  • Gerling D, Alomar Ò, Arnò J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20(9):779–799

    Article  Google Scholar 

  • Hale JK, Lunel SV (1993) Introduction to functional differential equations. Springer-Verlag, New York

    Book  Google Scholar 

  • Heffernan JM, Smith RJ, Wahl LM (2005) Perspectives on the basic reproductive ratio. J R Soc Interface 2:281–293

    Article  Google Scholar 

  • Holt J, Jeger MJ, Thresh JM, Otim-Nape GW (1997) An epidemilogical model incorporating vector population dynamics applied to African cassava mosaic virus disease. J Appl Ecol 34:793–806

    Article  Google Scholar 

  • Horowitz AR, Ghanim M, Roditakis E, Nauen R, Ishaaya I (2020) Insecticide resistance and its management in Bemisia tabaci species. J Pest Sci 93:893–910

    Article  Google Scholar 

  • Jackson M, Chen-Charpentier BM (2018) A model of biological control of plant virus propagation with delays. J Comput Appl Math 330:855–865

    Article  MathSciNet  Google Scholar 

  • Jeger MJ, Holt J, Van Den Bosch F, Madden LV (2004) Epidemiology of insect-transmitted plant viruses: modelling disease dynamics and control interventions. Physiol Entomol 29(3):291–304

    Article  Google Scholar 

  • Kedar SC, Saini RK, Kumaranag KM (2014) Biology of cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) on cotton. J Entomol Res 38(2):135–139

    Google Scholar 

  • Lacey LA, Wraight SP, Kirk AA (2008) Entomopathogenic fungi for control of Bemisia tabaci biotype B: foreign exploration, research and implementation. Classical biological control of Bemisia tabaci in the United States-a review of interagency research and implementation. Springer, Dordrecht, pp 33–69

    Chapter  Google Scholar 

  • Landahl HD, Hansen BD (1975) A three stage population model with cannibalism. Bull Math Biol 37(1):11–17

    Article  Google Scholar 

  • Ledder, (2017) Scaling for dynamical systems in biology. Bull Math Biol 79:2747–2772

  • Lefkovitch LP (1965) The study of population growth in organisms grouped by stages. Biometrics 1-18

  • Li S-J, Xue X, Ahmed MZ, Ren S-X, Du Y-Z, Wu J-H, Cuthbertson AGS, Qiu B-L (2011) Host plants and natural enemies of Bemisia tabaci (Hemiptera: Aleyrodidae) in China. Insect Sci 18(1):101–120

    Article  Google Scholar 

  • Liu S, Chen L, Agarwal R (2002) Recent progress on stage-structured population dynamics. Math Comput Model 36(11–13):1319–1360

    Article  MathSciNet  Google Scholar 

  • MacDonald G (1955) The measurement of malaria transmission. Proc R Soc Med 48(4):295–302

    Google Scholar 

  • Mahy BWJ, Van Regenmortel MHV (2008) Encyclopedia of virology, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  • M’Kendrick AG (1925) Applications of mathematics to medical problems. Proc Edinb Math Soc 44:98–130

    Article  Google Scholar 

  • Moreno-Ripoll R, Gabarra R, Symondson WOC, King RA, Agustí N (2014) Do the interactions among natural enemies compromise the biological control of the whitefly Bemisia tabaci? J Pest Sci 87(1):133–141

    Article  Google Scholar 

  • Mota-Sanchez D, Wise JC (2020) The arthropod pesticide resistance database. Michigan State University. http://www.pesticideresistance.org

  • Murray JD (2002) Mathematical biology. I. An introduction. Springer, New York

    Book  Google Scholar 

  • Naranjo SE, Ellsworth PC (2005) Mortality dynamics and population regulation in Bemisia tabaci. Entomol Exp Appl 116(2):93–108

    Article  Google Scholar 

  • Naranjo SE, Ellsworth PC (2009) The contribution of conservation biological control to integrated control of Bemisia tabaci in cotton. Biol Control 51(3):458–470

    Article  Google Scholar 

  • Naranjo SE, Castle SJ, De Barro PJ, Liu SS (2009) Population dynamics, demography, dispersal and spread of Bemisia tabaci. In: Stansly P, Naranjo S (eds) Bemisia: Bionomics and management of a global pest. Springer, Dordrecht, pp 185–226

  • Palumbo JC, Horowitz AR, Prabhaker N (2001) Insecticidal control and resistance management for Bemisia tabaci. Crop Prot 20(9):739–765

    Article  Google Scholar 

  • Roditakis E, Roditakis NE, Tsagkarakou A (2005) Insecticide resistance in Bemisia tabaci (Homoptera: Aleyrodidae) populations from Crete. Pest Manage Sci 61(6):577–582

    Article  Google Scholar 

  • Sani I, Ismail SI, Abdullah S, Jalinas J, Jamian S, Saad N (2020) A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects 11(9):619

    Article  Google Scholar 

  • Sharpe FR, Lotka AJ (1911) LA problem in age-distribution. Lond Edinb Dublin Philos Mag J Sci 21(124):435–438

    Article  Google Scholar 

  • Smith KM (1972) A textbook of plant virus diseases, 3rd edn. Elsevier, New York

    Google Scholar 

  • Stansly PA, Sanchez PA, Rodrıguez JM, Canizares F, Nieto A, Leyva ML, Fajardo M, Suarez V, Urbaneja A (2004) Prospects for biological control of Bemisia tabaci (Homoptera, Aleyrodidae) in greenhouse tomatoes of southern Spain. Crop Prot 23(8):701–712

    Article  Google Scholar 

  • Van der Plank JE (1960) Analysis of epidemics. In: Horsfall JG, Cowling EB (eds) Plant pathology: an advance treatise. Academic Press, New York, pp 229–289

    Chapter  Google Scholar 

  • Van der Plank JE (1963) Plant diseases: epidemics and control. Academic Press, London

    Google Scholar 

  • Venturino E, Roy PK, Al Basir F, Datta A (2016) A model for the control of the mosaic virus disease in Jatropha curcas plantations. Energy Ecol Environ 1(6):360–369

    Article  Google Scholar 

Download references

Acknowledgements

Sagar Adhurya acknowledges the University Grant Commission, Government of India for funding this research under NET-JRF scheme Sl no. 2061530673.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad Al Basir.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest that could have influenced the work reported in this paper.

Additional information

Communicated by Juan Carlos Cortes.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of part (iii) of Theorem 1

To prove the theorem, we use the following normal form representing of the system on the central manifold

$$\begin{aligned} \dot{\mathbf{u}}=L_1 \mathbf{u}^2+L_2\phi \mathbf{u} \end{aligned}$$
(25)

where

$$\begin{aligned} L_1=\frac{\mathbf{v}}{2}\cdot D_{xx}f(x_0,\phi _0)\mathbf{w}^2\equiv \frac{1}{2}\sum ^n_{k,i,j=1}v_kw_iw_j\frac{\partial ^2 f_k}{\partial x_i\partial x_j }(x_0,\phi _0) \end{aligned}$$
(26)

and

$$\begin{aligned} L_2=\mathbf{z}\cdot D_{x\varphi }f(x_0,\phi _0)\mathbf{w}\equiv \sum ^n_{k,j=1}v_kw_i\frac{\partial ^2 f_k}{\partial x_i\partial \varphi }(x_0,\phi _0) \end{aligned}$$
(27)

In (26) and (27), \(\phi \) is a bifurcation parameter to be chosen, \(\phi _0\) is the critical vale; \(f_k\) denotes the right hand side of system (3), \(\mathbf{x}\) denotes the state vector, \(\mathbf{x}_0\) the disease-free equilibrium and \(\mathbf{v}\) and \(\mathbf{w}\) denote, respectively, the left and right eigenvectors corresponding to the null eigenvalue of the Jacobian matrix of a system, evaluated at the critical point.

Now, the system (3) is assumed at \({\mathcal {R}}_0=1\) that is \(\varLambda b =a\). Any of the parameters in the expression of \({\mathcal {R}}_0\) can be assumed as the bifurcation parameter. At the steady state \(E_0\), two eigenvalues of the characteristic equation are \(-\rho <0\) and \(-\mu <0\), and the remaining roots satisfy the cubic equation (14), that is, for \({\mathcal {R}}_0=1\), one eigenvalue is zero and other two satisfy

$$\begin{aligned} \xi ^2+(\rho a+2)\xi +(1+b+\varLambda b)=0, \end{aligned}$$

whose roots are real negative quantities. Thus, for \({\mathcal {R}}_0=1\) the disease-free equilibrium \(E_0\) is a non-hyperbolic equilibrium.

The right eigenvectors w = \((w_1,w_2, w_3,w_4,w_5)^T\) satisfies \(A(E_0)\mathbf{w }=0\), that is

$$\begin{aligned} A(E_0)=\left[ \begin{array}{ccccc} -\rho &{} ~~-\rho &{} 0 &{} 0&{}-\rho \\ \ \\ 0 &{} ~~-\rho a &{} 0 &{} 0&{} \rho \\ \ \\ 0 &{}0&{} ~~-\mu &{}~~~0&{} ~~~ 0\\ \ \\ 0 &{} ~-b&{} 1 &{} -1 &{} 0\\ \ \\ 0 &{} ~ \varLambda b &{} 0 &{}0 &{} -1\\ \end{array} \right] , \end{aligned}$$

This gives \(\mathbf{w }=(-1-a, ~1, ~0, ~ -b,~a)^T\). Again, the left eigenvectors z = \((z_1, z_2, z_3,z_4,z_5)^T\) satisfy \(A(E_0,\varLambda _0)^T\mathbf{v} = 0\), this yields z = \((0, ~1,~0,~0~\rho )^T.\)

The coefficients \(L_1\) and \(L_2\) is now computed using (26) and (27). Considering the system (3) and considering only the non-zero components of the left eigenvector \(\mathbf{z}\), it follows that:

$$\begin{aligned} L_1= & {} \frac{1}{2}\left[ z_2w_1w_5\frac{\partial ^2 f_2}{\partial x\partial w }(E_0,\varLambda _0)+z_5w_2w_4\frac{\partial ^2 f_5}{\partial y\partial w }(E_0,\varLambda _0)\right] \\= & {} -\left[ (1+a)+\rho ^2 b\right] <0,~ \text{ and }\\ L_2= & {} z_5w_2\frac{\partial ^2 f_5}{\partial y\partial \varLambda }(E_0,\varLambda _0)=\rho a > 0, \end{aligned}$$

and thus the bifurcation is forward.

Appendix B: Proof of Theorem 2

Proof

The characteristic equation at the endemic equilibrium \(E^*\) is

$$\begin{aligned} H(\xi )=\xi ^4+\sigma _1\xi ^3+\sigma _2\xi ^2+\sigma _3\xi +\sigma _4=0. \end{aligned}$$
(28)

If the roots of the characteristic equation (28) have negative real parts, then \(E^*\) is stable. Applying the Routh–Hurwitz criterion (Murray 2002) on the coefficients of (28), we can say that the (28) has roots with negative real parts if the following conditions are satisfied:

$$\begin{aligned} \sigma _1>0,~~\sigma _2> 0,~~\sigma _3> 0,~~\sigma _4>0,~~\sigma _1 \sigma _2 - \sigma _3>0,~~ \sigma _1 \sigma _2 \sigma _3 -\sigma _3^2-\sigma _4 \sigma _1^2 >0. \end{aligned}$$
(29)

Now, we discuss the existence of Hopf bifurcation.

Using the conditions (15), the characteristic equation (28) can be rewritten as follows

$$\begin{aligned} \left( \xi ^2+\frac{\sigma _3}{\sigma _1}\right) \left( \xi ^2+\sigma _1\xi +\frac{\sigma _1\sigma _4}{\sigma _3}\right) =0. \end{aligned}$$
(30)

Thus two roots of this equation are

$$\begin{aligned} \xi _{1,2}=\pm i\omega _{0},\quad \omega _0=\sqrt{\frac{\sigma _3}{\sigma _1}}, \end{aligned}$$

and the remaining two roots, \(\xi _3\) and \(\xi _4\) satisfy the equation

$$\begin{aligned} \xi ^2+\sigma _1\xi +\frac{\sigma _1\sigma _4}{\sigma _3}=0. \end{aligned}$$

Using (29) and applying Routh–Hurwitz criterion (Murray 2002), we can say that they both have negative real parts.

To verify the transversality condition, we first note that \(\varPhi (\zeta ^*)\) is a continuous function of its argument, and hence, there exists an open interval \(\zeta \in (\zeta ^*-\epsilon ,\zeta ^*+\epsilon )\), where \(\xi _1\) and \(\xi _2\) are complex conjugate roots of the characteristic equation, which can be written as

$$\begin{aligned} \xi _{1,2} (\zeta )= & {} \zeta (\zeta ) \pm i\nu (\zeta ), \end{aligned}$$

with \(\xi _{1,2}(\zeta ^*)=\pm i\omega _0\).

Substituting \(\xi _j (\zeta ) =\zeta (\zeta )\pm i\nu (\zeta )\) into the characteristic equation (28), differentiating with respect to \(\zeta \), and separating real and imaginary parts gives

$$\begin{aligned} P(\zeta )\zeta '(\zeta ) -Q(\zeta )\nu '(\zeta )+R(\zeta ) =0,\nonumber \\ Q(\zeta )\zeta '(\zeta )+P(\zeta )\nu '(\zeta ) +S(\zeta ) =0, \end{aligned}$$
(31)

where

$$\begin{aligned} P(\zeta )= & {} 4\zeta ^3-12\zeta \nu ^2+3\sigma _1(\zeta ^2-\nu ^2)+2\sigma _2\zeta +\sigma _3, \\ Q(\zeta )= & {} 12\zeta ^2\nu +6\sigma _1\zeta \nu -4\zeta ^3+2\sigma _2\zeta , \\ R(\zeta )= & {} \sigma _1\zeta ^3-3\sigma _1'\zeta \nu ^2+\sigma _2'(\zeta ^2-\nu ^2)+\sigma _3'\zeta , \\ S(\zeta )= & {} 3\sigma _1'\zeta ^2\nu -\sigma _1'\nu ^3+2\sigma _2'\zeta \nu +\sigma _3'\zeta . \end{aligned}$$

Solving the (31) for \(\zeta '(\zeta ^*)\) and using the condition in (15) we have

$$\begin{aligned} \left[ \frac{\text {d} \mathrm{Re}[\xi _j(\zeta )]}{d\zeta }\right] _{\zeta =\zeta ^*}= & {} \zeta '(\zeta ^*) =-\frac{Q(\zeta ^*)S(\zeta ^*)+P(\zeta ^*)R(\zeta ^*)}{P^2(\zeta ^*)+Q^2(\zeta ^*)} \\= & {} \frac{\sigma _1^3\sigma _2'\sigma _3(\sigma _1-3\sigma _3) -2(\sigma _2\sigma _1^2-2\sigma _3^2) (\sigma _3'\sigma _1^2-\sigma _1'\sigma _3^2)}{\sigma _1^4(\sigma _1-3\sigma _3)^2+4(\sigma _2\sigma _1^2-2\sigma _3^2)^2}\ne 0. \end{aligned}$$

Therefore, the transversality condition is satisfies. This confirms the occurrence of Hopf bifurcation at the critical value \(\zeta =\zeta ^*\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhurya, S., Basir, F.A. & Ray, S. Stage-structure model for the dynamics of whitefly transmitted plant viral disease: an optimal control approach. Comp. Appl. Math. 41, 154 (2022). https://doi.org/10.1007/s40314-022-01864-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01864-9

Keywords

Mathematics Subject Classification

Navigation