Skip to main content
Log in

A new hybrid regularization scheme for removing salt and pepper noise

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We propose a new model for removing the Salt and Pepper Noise (SPN) by combining the high-order total variation overlapping group sparsity with the nuclear norm regularization. Since the proposed model is convex, non-smooth, and separable, the alternating direction method of multipliers (ADMM) can be employed to solve it and the convergence can be kept. Numerical comparisons with some related state-of-the-art models show that the proposed model can significantly improve the restored quality in terms of the signal to noise ratio (SNR) and the structural similarity index measure (SSIM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This paper assumes that the image is normalized into the range [0,1].

  2. In the numerical implementations, we set \(\mathbf{q} ^0=\nabla ^2f\) and \(h^0, r^0, \varrho _1^0,\varvec{\varrho }_2^0,\varrho _3^0\) be the zero matrix and tensor.

  3. To quantitatively assess the image quality, we adopt the Signal to Noise Ratio (SNR) and the Structural Similarity Index Measure (SSIM) based on the Matlab functions as \(snr(\cdot )\) and \(ssim(\cdot )\).

References

  • Amiri S (2019) Salt and pepper noise removal using pixon-based segmentation and adaptive median filter. J AI Data Min 8(1):119–126

    Google Scholar 

  • Arridge S, Maass P, Oktem O, Schonlieb C (2019) Solving inverse problems using data-driven models. Acta Numer 28:1–174

    Article  MathSciNet  Google Scholar 

  • Athey S, Bayati M, Doudchenko N, Imbens G, Khosravi K (2021) Matrix completion methods for causal panel data models. J Am Stat Assoc 116(536):1716–1730

    Article  MathSciNet  Google Scholar 

  • Bakushinsky A, Kokurin M, Kokurin M (2018) Regularization Algorithms for Ill-Posed Problems. De Gruyter

  • Bandala-Hernandez H, Rocha-Pérez J, Díaz-Sánchez A (2016) Weighted median filters: an analog implementation. Integration 55:227–231

    Article  Google Scholar 

  • Beck A (2014) Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB. SIAM

  • Bini A (2019) Image restoration via DOST and total variation regularisation. IET Image Proc 13(3):458–468

    Article  Google Scholar 

  • Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  Google Scholar 

  • Bredies K, Holler M (2021) Higher-order total variation approaches and generalisations. Inverse Prob 36(12):123001

    Article  MathSciNet  Google Scholar 

  • Bredies K, Kunisch K, Pock T (2010) Total Generalized Variation. SIAM J Image Sci 3(3):492–526

    Article  MathSciNet  Google Scholar 

  • Buades A, Coll B, Morel J (2006) The staircasing effect in neighborhood filters and its solution. IEEE Trans Image Process 15(6):1499–1505

    Article  Google Scholar 

  • Cai J, Candés E, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  Google Scholar 

  • Chambolle A, Lions P (1997) Image recovery via total variation minimization and related problems. Numer Math 76(2):167–188

    Article  MathSciNet  Google Scholar 

  • Chan T, Esedoglu S (2005) Aspects of total variation regularized \(L^{1}\) function approximation. SIAM J Appl Math 65(5):1817–1837

    Article  MathSciNet  Google Scholar 

  • Chan R, Ho C, Nikolova M (2005) Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans Image Process 14(10):1479–1485

    Article  Google Scholar 

  • Chen C, He B, Ye Y, Yuan X (2016) The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math Program 155(1–2):57–79

    Article  MathSciNet  Google Scholar 

  • Erkan U, Gokrem L, Enginoglu S (2018) Different applied median filter in salt and pepper noise. Comput Electr Eng 70:789–798

    Article  Google Scholar 

  • Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl 2(1):17–40

    Article  Google Scholar 

  • Glowinski R, Marroco A (1975) Sur lapproximation, par éléments finis dordre un, et la résolution, par pénalisation-dualité, dune classe de problèmes de Dirichlet non linéares. ESAIM Math Model Numer Anal 9(R2):41–76

    MATH  Google Scholar 

  • Glowinski R, Osher S, Yin W (2016) Splitting Methods in Communication. Science, and Engineering. Springer, New York (Imaging)

    Book  Google Scholar 

  • Goyal G (2016) Improved image denoising filter using low rank and total variation. Global J Comp Sci Technol 16(1):13–15

    Google Scholar 

  • Guo X, Li F, Ng M (2009) A fast \(l\)1-TV algorithm for image Restoration. SIAM J Sci Comput 31(3):2322–2341

    Article  MathSciNet  Google Scholar 

  • Guo W, Qin J, Yin W (2014) A new detail-preserving regularization scheme. SIAM J Imag Sci 7(2):1309–1334

    Article  MathSciNet  Google Scholar 

  • Hager W, Hearn W, Pardalos P (1994) Large Scale Optimization. Springer, New York

    Book  Google Scholar 

  • Han D (2022) A survey on some recent developments of alternating direction method of multipliers. J Oper Res Soc China. https://doi.org/10.1007/s40305-021-00368-3

    Article  MathSciNet  MATH  Google Scholar 

  • Jia X, Feng X, Wang W (2016) Rank constrained nuclear norm minimization with application to image denoising. Signal Process 129:1–11

    Article  Google Scholar 

  • Kongskov R, Dong Y (2017) Directional total generalized variation regularization for impulse noise removal. Scale Space Var Methods Comput Vis 10302:221–231

    Article  Google Scholar 

  • Liu P (2020) Hybrid higher-order total variation model for multiplicative noise removal. IET Image Proc 14(5):862–873

    Article  Google Scholar 

  • Liu G, Huang T, Liu J (2014) High-order TVL1-based images restoration and spatially adapted regularization parameter selection. Comput Math Appl 67(10):2015–2026

    Article  MathSciNet  Google Scholar 

  • Liu G, Huang T, Liu J, Lv X (2015) Total variation with overlapping group sparsity for image deblurring under impulse noise. PLoS One 10(4):e0122562

    Article  Google Scholar 

  • Liu J, Huang T, Selesnick I et al (2015) Image restoration using total variation with overlapping group sparsity. Inf Sci 295:232–246

    Article  MathSciNet  Google Scholar 

  • Lu C, Tang J, Yan S, Lin Z (2016) Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm. IEEE Trans Image Process 25(2):829–839

    Article  MathSciNet  Google Scholar 

  • Palomar D, Eldar Y (2011) Convex Optimization in Signal Processing and Communications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Parisotto S, Masnou S, Schönlieb C (2020) Higher-order total directional variation:analysis. SIAM J Imag Sci 13(1):474–496

    Article  MathSciNet  Google Scholar 

  • Peyré G, Fadili J (2011) Group sparsity with overlapping partition functions. In: European Signal Processing Conference, 303–307

  • Ryu E, Liu Y, Yin W (2019) Douglas-Rachford splitting and ADMM for pathological convex optimization. Comput Optim Appl 74:747–778

    Article  MathSciNet  Google Scholar 

  • Selesnick I, Chen P (2013) Total variation denoising with overlapping group sparsity. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, 5696–5700

  • Sreedevi S, Sherly E (2020) A new and efficient approach for the removal of high density impulse noise in mammogram. J Comput Aided Eng Technol 12(3):370–391

    Article  Google Scholar 

  • Srinivasan K, Ebenezer D (2007) A new fast and efficient decision-based algorithm for removal of high-density impulse noises. IEEE Signal Process Lett 14(3):189–192

    Article  Google Scholar 

  • Toh K, Isa N (2010) Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Process Lett 17(3):281–284

    Article  Google Scholar 

  • Toh K, Ibrahim H, Mahyuddin M (2008) Salt-and-pepper noise detection and reduction using fuzzy switching median filter. IEEE Trans Consum Electron 54(4):1956–1961

    Article  Google Scholar 

  • Wang S, Wu C (2009) A new impulse detection and filtering method for removal of wide range impulse noises. Pattern Recogn 42(9):2194-2202

    Article  MathSciNet  Google Scholar 

  • Wang G, Li W, Huang Y (2021) Medical image fusion based on hybrid three-layer decomposition model and nuclear norm. Comput Biol Med 129:104179

    Article  Google Scholar 

  • Yin W, Goldfarb D, Osher S (2007) The total variation regularized \(L^{1}\) model for multiscale decomposition. Multiscale Model Simul 6(1):190–211

    Article  MathSciNet  Google Scholar 

  • Zhang S, Karim M (2002) A new impulse detector for switching median filters. IEEE Signal Process Lett 9(11):360–363

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Zhi-Feng Pang of Henan University for his suggestions on the numerical implementations. This work is partially supported by Programs for Science and Technology Development of Henan Province (Nos.212102210511, 212102310652) and Health Commission of Henan Province (No.Wjlx2020380).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haohui Zhu or Baoli Shi.

Additional information

Communicated by Vinicius Albani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Haohui Zhu and Baoli Shi contributed equally to this work and should be considered as corresponding authors.

Appendices

Appendix A

Proof

Based on the property of the nuclear norm \(\Vert \cdot \Vert _*\) and \(\phi (\cdot )\) as the extension of the Frobenius norm, we first can deduce that the objective function in the model (2) is strictly convex. For \(u\in \ell ^1(\mathbf{X} )\), the objective function is also coercive whenever u goes to infinity in the fitting term \(\Vert u-f\Vert _1\). Following the standard numerical optimization theory Beck (2014), we can deduce that the model (2) exists a global solution. \(\square \)

Appendix B

Proof

Since \((h^{*},{\mathbf {q}}^{*},r^{*},u^{*},\varrho _{1}^{*},\varvec{\varrho }_{2}^{*},\varrho _{3}^{*})\)  is the saddle point of the original problem, we can deduce \(h^{*}=u^{*}-f\)\({\mathbf {q}}^{*}=\nabla ^{2} u^{*}\)\(r^{*}=u^{*}\) and then (10)–(12) can be replaced by

$$\begin{aligned} {\left\{ \begin{array}{ll} \varrho _1^{*}=\varrho _1^* + \beta _1(h^{*}-u^{*}+f),\\ \varvec{\varrho }_2^{*}=\varvec{\varrho }_2^* + \beta _2({\mathbf {q}}^{*}-\nabla ^{2} {u^{*}}),\\ \varrho _3^{*}=\varrho _3^* + \beta _3(r^{*}-u^{*}). \end{array}\right. } \end{aligned}$$
(18)

If setting the relative errors by  \(h_{e}^{k}=h^{k}-h^{*}\)\({\mathbf {q}}_{e}^{k}={\mathbf {q}}^{k}-{\mathbf {q}}^{*}\)\(r_{e}^{k}=r^{k}-r^{*}\)\(u_{e}^{k}=u^{k}-u^{*}\), \(\varrho _{1e}^{k}=\varrho _{1}^{k}-\varrho _{1}^{*}\)\(\varvec{\varrho }_{2e}^{k}=\varvec{\varrho }_{2}^{k}-\varvec{\varrho }_{2}^{*}\), \(\varrho _{3e}^{k}=\varrho _{3}^{k}-\varrho _{3}^{*}\), and subtracting (18) from (10)–(12), we can obtain that

$$\begin{aligned} \left\{ \begin{array}{llll} \varrho _{1e}^{k+1}=\varrho _{1e}^k + \beta _1(h_{e}^{k+1}-u_{e}^{k+1}),\\ \varvec{\varrho }_{2e}^{k+1}=\varvec{\varrho }_{2e}^k + \beta _2({\mathbf {q}}_{e}^{k+1}-\nabla ^{2} {u_{e}^{k+1}}),\\ \varrho _{3e}^{k+1}=\varrho _{3e}^k + \beta _3(r_{e}^{k+1}-u_{e}^{k+1}). \end{array} \right. \end{aligned}$$
(19)

Squared both sides of (19), we can obtain that

$$\begin{aligned} {\left\{ \begin{array}{ll} \Vert \varrho _{1e}^{k+1}\Vert _{2}^{2}&{}=\Vert \varrho _{1e}^k\Vert _{2}^{2}+\beta _1^{2}\Vert h_{e}^{k+1}-u_{e}^{k+1}\Vert _{2}^{2} +2\beta _{1}\langle \varrho _{1e}^k,h_{e}^{k+1}-u_{e}^{k+1}\rangle ,\\ \Vert \varvec{\varrho }_{2e}^{k+1}\Vert _{\mathrm {F}}^{2}&{}=\Vert \varvec{\varrho }_{2e}^k\Vert _{\mathrm {F}}^{2} +\beta _2^{2}\Vert {\mathbf {q}}_{e}^{k+1}-\nabla ^{2} u_{e}^{k+1}\Vert _{\mathrm {F}}^{2} +2\beta _{2}\langle \varvec{\varrho }_{2e}^k,{\mathbf {q}}_{e}^{k+1}-\nabla ^{2} u_{e}^{k+1}\rangle ,\\ \Vert \varrho _{3e}^{k+1}\Vert _{2}^{2}&{}=\Vert \varrho _{3e}^k\Vert _{2}^{2}+\beta _3^{2}\Vert r_{e}^{k+1}-u_{e}^{k+1}\Vert _{2}^{2} +2\beta _{3} \langle \varrho _{3e}^k,r_{e}^{k+1}-u_{e}^{k+1}\rangle . \end{array}\right. } \end{aligned}$$

The above facts can be equivalently expressed as follows.

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2\beta _{1}}\left( \left\| \varrho _{1e}^k\right\| _{2}^{2} -\left\| \varrho _{1e}^{k+1}\right\| _{2}^{2}\right) =\left\langle u_{e}^{k+1}-h_{e}^{k+1},\varrho _{1e}^k\right\rangle -\frac{\beta _{1}}{2}\left\| h_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2},\\ \frac{1}{2\beta _{2}}\left( \left\| \varvec{\varrho }_{2e}^k\right\| _{\mathrm {F}}^{2} -\left\| \varvec{\varrho }_{2e}^{k+1}\right\| _{\mathrm {F}}^{2}\right) =\left\langle \nabla ^{2} u_{e}^{k+1}-{\mathbf {q}}_{e}^{k+1}, \varvec{\varrho }_{2e}^k\right\rangle -\frac{\beta _2}{2}\left\| {\mathbf {q}}_{e}^{k+1}-\nabla ^{2} u_{e}^{k+1}\right\| _{\mathrm {F}}^{2},\\ \frac{1}{2\beta _{3}}\left( \left\| \varrho _{3e}^k\right\| _{2}^{2}-\left\| \varrho _{3e}^{k+1}\right\| _{2}^{2}\right) =\left\langle u_{e}^{k+1}-r_{e}^{k+1},\varrho _{3e}^k\right\rangle -\frac{\beta _3}{2}\left\| r_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2}. \end{array}\right. }\nonumber \\ \end{aligned}$$
(20)

Based on Lemma 4, for the saddle point \(\left( h^{*},{\mathbf {q}}^{*},r^{*},u^{*},\varrho _{1}^{*},\varvec{\varrho }_{2}^{*},\varrho _{3}^{*}\right) \), we can get

$$\begin{aligned} {\left\{ \begin{array}{ll} \Vert h\Vert _{1}-\left\| h^{*}\right\| _{1}+\left\langle \varrho _{1}^{*},h-h^{*} \right\rangle +\beta _{1}\left\langle h^{*}-u^{*}+f,h-h^{*}\right\rangle \ge 0,\\ \lambda _{1}\left( \varphi \left( {\mathbf {q}}\right) -\varphi \left( {\mathbf {q}}^{*}\right) \right) +\left\langle \varvec{\varrho }_{2}^{*},{\mathbf {q}}-{\mathbf {q}}^{*} \right\rangle +\beta _{2}\left\langle {\mathbf {q}}^{*}-\nabla ^{2}u^{*},{\mathbf {q}}-{\mathbf {q}}^{*}\right\rangle \ge 0,\\ \lambda _{2}\left( \Vert r\Vert _{*}-\left\| r^{*}\right\| _{*}\right) +\left\langle \varrho _{3}^{*},r-r^{*} \right\rangle +\beta _{3}\left\langle r^{*}-u^{*},r-r^{*}\right\rangle \ge 0,\\ \left\langle \varrho _{1}^{*}+\mathrm {div}^{2}\varvec{\varrho }_{2}^{*}+\varrho _{3}^{*}, u^{*}-u\right\rangle +\beta _{1}\left\langle h^{*}-u^{*}+f,u^{*}-u \right\rangle \\ +\beta _{2}\mathrm {div}^{2}\left\langle {\mathbf {q}}^{*}-\nabla ^{2}u^{*},u^{*}-u\right\rangle +\beta _{3}\left\langle r^{*}-u^{*},u^{*}-u\right\rangle \ge 0. \end{array}\right. }\nonumber \\ \end{aligned}$$
(21)

To the subproblem (6), using Lemma 4 again, we can get

$$\begin{aligned}&\left\langle \varrho _{1}^{k}+\mathrm {div}^{2}\varvec{\varrho }_{2}^{k} +\varrho _{3}^{k},u^{k+1}-u\rangle +\beta _{1}\langle h^{k}-u^{k+1}+f,u^{k+1}-u\right\rangle \nonumber \\&\quad +\beta _{2}\mathrm {div}^{2}\left\langle {\mathbf {q}}^{k}-\nabla ^{2}u^{k+1},u^{k+1}-u\rangle +\beta _{3}\langle r^{k}-u^{k+1},u^{k+1}-u\right\rangle \ge 0. \end{aligned}$$
(22)

By first setting u of the forth inequation in (21) to be \(u^{k+1}\) and u in (22) to be \(u^*\) and then adding them, we can deduce that

$$\begin{aligned}&\left\langle \varrho _{1e}^{k},u_{e}^{k+1}\right\rangle +\left\langle \varvec{\varrho }_{2e}^{k},\nabla ^{2}u_{e}^{k+1}\right\rangle +\left\langle \varrho _{3e}^{k},u_{e}^{k+1}\right\rangle +\beta _{1}\left\langle h_{e}^{k}-u_{e}^{k+1},u_{e}^{k+1}\right\rangle \nonumber \\&\quad +\beta _{2}\left\langle {\mathbf {q}}_{e}^{k}-\nabla ^{2} u_{e}^{k+1},\nabla ^{2} u_{e}^{k+1}\right\rangle +\beta _{3}\left\langle r_{e}^{k}-u_{e}^{k+1},u_{e}^{k+1}\right\rangle \ge 0. \end{aligned}$$
(23)

Similarly, we have

figure c

Summing (23) with (24)–(26) together, we have

$$\begin{aligned}&\left\langle \varrho _{1e}^{k},u_{e}^{k+1}-h_{e}^{k+1}\right\rangle +\left\langle \varvec{\varrho }_{2e}^{k},\nabla ^{2} u_{e}^{k+1}-{\mathbf {q}}_{e}^{k+1}\right\rangle +\left\langle \varrho _{3e}^{k},u_{e}^{k+1}-r_{e}^{k+1}\right\rangle \nonumber \\&\quad +\beta _{1}\left( \left\langle h_{e}^{k}-u_{e}^{k+1},u_{e}^{k+1}\right\rangle +\left\langle u_{e}^{k+1}-h_{e}^{k+1},h_{e}^{k+1}\right\rangle \right) \nonumber \\&\quad +\beta _{2}\left( \left\langle {\mathbf {q}}_{e}^{k}-\nabla ^{2}u_{e}^{k+1}, \nabla ^{2}u_{e}^{k+1}\right\rangle +\left\langle \nabla ^{2}u_{e}^{k+1}-{\mathbf {q}}_{e}^{k+1}, {\mathbf {q}}_{e}^{k+1}\right\rangle \right) \nonumber \\&\quad +\beta _{3}\left( \left\langle r_{e}^{k}-u_{e}^{k+1},u_{e}^{k+1}\right\rangle +\left\langle u_{e}^{k+1}-r_{e}^{k+1},r_{e}^{k+1}\right\rangle \right) \ge 0. \end{aligned}$$
(27)

Reorganizing the inequation (27), we can get

$$\begin{aligned}&\left\langle \varrho _{1e}^{k},u_{e}^{k+1}-h_{e}^{k+1}\right\rangle +\left\langle \varvec{\varrho }_{2e}^{k},\nabla ^{2} u_{e}^{k+1}-{\mathbf {q}}_{e}^{k+1}\right\rangle +\left\langle \varrho _{3e}^{k},u_{e}^{k+1}-r_{e}^{k+1}\right\rangle \nonumber \\&\quad \ge \beta _{1}\left\langle h_{e}^{k+1}-h_{e}^{k},u_{e}^{k+1}\right\rangle +\beta _{1}\left\| h_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2}+\beta _{2}\left\langle {\mathbf {q}}_{e}^{k+1}-{\mathbf {q}}_{e}^{k},\nabla ^{2}u_{e}^{k+1}\right\rangle \nonumber \\&\qquad +\beta _{2}\left\| {\mathbf {q}}_{e}^{k+1}-\nabla ^{2} u_{e}^{k+1}\right\| _{\mathrm {F}}^{2}+\beta _{3}\left\langle r_{e}^{k+1}-r_{e}^{k},u_{e}^{k+1}\right\rangle +\beta _{3}\left\| r_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2}. \end{aligned}$$
(28)

Combining (20) with (28), we have

$$\begin{aligned}&\frac{1}{2\beta _{1}}\left( \left\| \varrho _{1e}^k\right\| _{2}^{2}-\left\| \varrho _{1e}^{k+1}\right\| _{2}^{2}\right) + \frac{\beta _{1}}{2}\left\| h_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2}+ \frac{1}{2\beta _{2}}\left( \left\| \varvec{\varrho }_{2e}^k\right\| _{\mathrm {F}}^{2} -\left\| \varvec{\varrho }_{2e}^{k+1}\right\| _{\mathrm {F}}^{2}\right) \\&\qquad +\frac{\beta _{2}}{2}\left\| {\mathbf {q}}_{e}^{k+1}-\nabla ^{2} u_{e}^{k+1}\right\| _{\mathrm {F}}^{2} +\frac{1}{2\beta _{3}}\left( \left\| \varrho _{3e}^k\right\| _{2}^{2} -\left\| \varrho _{3e}^{k+1}\right\| _{2}^{2}\right) +\frac{\beta _{3}}{2}\left\| r_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2} \\&\quad \ge \beta _{1}\left\langle h_{e}^{k+1}-h_{e}^{k},u_{e}^{k+1}\right\rangle +\beta _{1}\left\| h_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2} +\beta _{2}\left\langle {\mathbf {q}}_{e}^{k+1}-{\mathbf {q}}_{e}^{k},\nabla ^{2}u_{e}^{k+1}\right\rangle \\&\qquad +\beta _{2}\left\| {\mathbf {q}}_{e}^{k+1}-\nabla ^{2} u_{e}^{k+1}\right\| _{\mathrm {F}}^{2}+\beta _{3}\left\langle r_{e}^{k+1}-r_{e}^{k},u_{e}^{k+1}\right\rangle +\beta _{3}\left\| r_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2}. \end{aligned}$$

With the simple calculation, we obtain

$$\begin{aligned}&\frac{1}{\beta _{1}}\left( \left\| \varrho _{1e}^k\right\| _{2}^{2}-\left\| \varrho _{1e}^{k+1}\right\| _{2}^{2}\right) + \frac{1}{\beta _{2}}\left( \left\| \varvec{\varrho }_{2e}^k\right\| _{\mathrm {F}}^{2} -\left\| \varvec{\varrho }_{2e}^{k+1}\right\| _{\mathrm {F}}^{2}\right) +\frac{1}{\beta _{3}}\left( \left\| \varrho _{3e}^k\right\| _{2}^{2}-\left\| \varrho _{3e}^{k+1}\right\| _{2}^{2}\right) \nonumber \\&\quad \ge 2\beta _{1}\left\langle h_{e}^{k+1}-h_{e}^{k},u_{e}^{k+1}\right\rangle +\beta _{1}\left\| h_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2} +2\beta _{2}\left\langle {\mathbf {q}}_{e}^{k+1}-{\mathbf {q}}_{e}^{k},\nabla ^{2}u_{e}^{k+1}\right\rangle \nonumber \\&\qquad +\beta _{2}\left\| {\mathbf {q}}_{e}^{k+1}-\nabla ^{2} u_{e}^{k+1}\right\| _{\mathrm {F}}^{2}+2\beta _{3}\left\langle r_{e}^{k+1}-r_{e}^{k},u_{e}^{k+1}\right\rangle +\beta _{3}\left\| r_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2}. \end{aligned}$$
(29)

Similar to the subproblem (7), using Lemma 4 again, we still have

figure d

Setting \(h:=h^{k}\) in (21) and \(h:=h^{k+1}\) in (22) and then adding them, we can deduce that

$$\begin{aligned} \left\langle \varrho _{1e}^{k-1}-\varrho _{1e}^{k},h_{e}^{k+1}-h_{e}^{k} \right\rangle -\beta _{1}\left\| h_{e}^{k+1}-h_{e}^{k}\right\| _{2}^{2} -\beta _{1}\left\langle u_{e}^{k}-u_{e}^{k+1},h_{e}^{k+1}-h_{e}^{k}\right\rangle \ge 0. \end{aligned}$$
(32)

Using the fact \(\varrho _{1e}^{k}=\varrho _{1e}^{k-1}+\beta _{1}(h_{e}^{k}-u_{e}^{k})\), the inequation (32) can be rearranged as

$$\begin{aligned} \left\langle u_{e}^{k+1}-h_{e}^{k},h_{e}^{k+1}-h_{e}^{k} \right\rangle \ge \Vert h_{e}^{k+1}-h_{e}^{k}\Vert _{2}^{2}. \end{aligned}$$
(33)

Furthermore, using

$$\begin{aligned} \langle h_{e}^{k+1}-h_{e}^{k},h_{e}^{k} \rangle =\frac{1}{2}\left( \Vert h_{e}^{k+1}\Vert _{2}^{2}-\Vert h_{e}^{k}\Vert _{2}^{2} -\Vert h_{e}^{k+1}-h_{e}^{k}\Vert _{2}^{2}\right) , \end{aligned}$$

the inequation (33) can be written as

$$\begin{aligned} 2\left\langle h_{e}^{k+1}-h_{e}^{k},u_{e}^{k+1}\right\rangle \ge \left\| h_{e}^{k+1}\right\| _{2}^{2}-\left\| h_{e}^{k}\right\| _{2}^{2} +\left\| h_{e}^{k+1}-h_{e}^{k}\right\| _{2}^{2}. \end{aligned}$$
(34)

Similarly, we have

$$\begin{aligned} {\left\{ \begin{array}{ll} 2\left\langle {\mathbf {q}}_{e}^{k+1}-{\mathbf {q}}_{e}^{k},\nabla ^{2}u_{e}^{k+1} \right\rangle \ge \left\| {\mathbf {q}}_{e}^{k+1}\right\| _{\mathrm {F}}^{2}-\left\| {\mathbf {q}}_{e}^{k}\right\| _{\mathrm {F}}^{2} +\left\| {\mathbf {q}}_{e}^{k+1}-{\mathbf {q}}_{e}^{k}\right\| _{\mathrm {F}}^{2},\\ 2\left\langle r_{e}^{k+1}-r_{e}^{k},u_{e}^{k+1} \right\rangle \ge \left\| r_{e}^{k+1}\right\| _{2}^{2}-\left\| r_{e}^{k}\right\| _{2}^{2}+\left\| r_{e}^{k+1}-r_{e}^{k}\right\| _{2}^{2}. \end{array}\right. } \end{aligned}$$
(35)

By putting (34) and (35) into (29), with the simple recombination, we can get

$$\begin{aligned}&\frac{1}{\beta _{1}}\left( \left\| \varrho _{1e}^k\right\| _{2}^{2}-\left\| \varrho _{1e}^{k+1}\right\| _{2}^{2}\right) + \frac{1}{\beta _{2}}\left( \left\| \varvec{\varrho }_{2e}^k\right\| _{\mathrm {F}}^{2} -\left\| \varvec{\varrho }_{2e}^{k+1}\right\| _{\mathrm {F}}^{2}\right) +\frac{1}{\beta _{3}}\left( \left\| \varrho _{3e}^k\right\| _{2}^{2} -\left\| \varrho _{3e}^{k+1}\right\| _{2}^{2}\right) \\&\qquad +\beta _{1}\left( \left\| h_{e}^{k}\right\| _{2}^{2}-\left\| h_{e}^{k+1}\right\| _{2}^{2}\right) +\beta _{2}\left( \left\| {\mathbf {q}}_{e}^{k}\right\| _{\mathrm {F}}^{2} -\left\| {\mathbf {q}}_{e}^{k+1}\right\| _{\mathrm {F}}^{2}\right) +\beta _{3}\left( \left\| r_{e}^{k}\right\| _{2}^{2}-\left\| r_{e}^{k+1}\right\| _{2}^{2}\right) \\&\quad \ge \beta _{1}\left\| h_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2} +\beta _{1}\left\| h_{e}^{k+1}-h_{e}^{k}\right\| _{2}^{2} +\beta _{2}\left\| {\mathbf {q}}_{e}^{k+1}-\nabla ^{2}u_{e}^{k+1}\right\| _{\mathrm {F}}^{2} \\ {}&\qquad +\beta _{2}\left\| {\mathbf {q}}_{e}^{k+1}-{\mathbf {q}}_{e}^{k}\right\| _{\mathrm {F}}^{2} +\beta _{3}\left\| r_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2} +\beta _{3}\left\| r_{e}^{k+1}-r_{e}^{k}\right\| _{2}^{2}. \end{aligned}$$

The above inequation is added from the \(k=0\) to the \(k=M\), we have

$$\begin{aligned}&\frac{1}{\beta _{1}}\left( \left\| \varrho _{1e}^0\right\| _{2}^{2}-\left\| \varrho _{1e}^{M+1}\right\| _{2}^{2}\right) + \frac{1}{\beta _{2}}\left( \left\| \varvec{\varrho }_{2e}^0\right\| _{\mathrm {F}}^2 -\left\| \varvec{\varrho }_{2e}^{M+1}\right\| _{\mathrm {F}}^2\right) +\frac{1}{\beta _{3}}\left( \left\| \varrho _{3e}^0\right\| _{2}^{2}-\left\| \varrho _{3e}^{M+1}\right\| _{2}^{2}\right) \\&\qquad +\beta _{1}\left( \left\| h_{e}^{0}\right\| _{2}^{2}-\left\| h_{e}^{M+1}\right\| _{2}^{2}\right) +\beta _{2}\left( \left\| {\mathbf {q}}_{e}^{0}\right\| _{\mathrm {F}}^{2}-\left\| {\mathbf {q}}_{e}^{M+1}\right\| _{\mathrm {F}}^{2}\right) +\beta _{3}\left( \left\| r_{e}^{0}\right\| _{2}^{2}-\left\| r_{e}^{M+1}\right\| _{2}^{2}\right) \\&\quad \ge \sum \limits _{k=0}^{M}\beta _{1}\left\| h_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2} +\sum \limits _{k=0}^{M}\beta _{1}\left\| h_{e}^{k+1}-h_{e}^{k}\right\| _{2}^{2} +\sum \limits _{k=0}^{M}\beta _{2}\left\| {\mathbf {q}}_{e}^{k+1}-\nabla ^{2}u_{e}^{k+1}\right\| _{\mathrm {F}}^{2} \\&\qquad +\sum \limits _{k=0}^{M}\beta _{2}\left\| {\mathbf {q}}_{e}^{k+1}-{\mathbf {q}}_{e}^{k}\right\| _{\mathrm {F}}^{2} +\sum \limits _{k=0}^{M}\beta _{3}\left\| r_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2} +\sum \limits _{k=0}^{M}\beta _{3}\left\| r_{e}^{k+1}-r_{e}^{k}\right\| _{2}^{2}. \end{aligned}$$

Above inequation can furthermore shrunken as

$$\begin{aligned}&\frac{1}{\beta _{1}}\left\| \varrho _{1e}^0\right\| _{2}^{2}+\frac{1}{\beta _{2}} \left\| \varvec{\varrho }_{2e}^0\right\| _{\mathrm {F}}^{2} +\frac{1}{\beta _{3}}\left\| \varrho _{3e}^0\right\| _{2}^{2}+\beta _{1}\left\| h_{e}^{0}\right\| _{2}^{2} +\beta _{2}\Vert {\mathbf {q}}_{e}^{0}\Vert _{\mathrm {F}}^{2} +\beta _{3}\left\| r_{e}^{0}\right\| _{2}^{2}\nonumber \\&\quad \ge \sum \limits _{k=0}^{M}\beta _{1}\left\| h_{e}^{k+1} -u_{e}^{k+1}\right\| _{2}^{2} +\sum \limits _{k=0}^{M}\beta _{1}\left\| h_{e}^{k+1}-h_{e}^{k}\right\| _{2}^{2} +\sum \limits _{k=0}^{M}\beta _{2}\left\| {\mathbf {q}}_{e}^{k+1}-\nabla ^{2}u_{e}^{k+1} \right\| _{\mathrm {F}}^{2}\nonumber \\&\qquad +\sum \limits _{k=0}^{M}\beta _{2}\Vert {\mathbf {q}}_{e}^{k+1} -{\mathbf {q}}_{e}^{k}\Vert _{\mathrm {F}}^{2} +\sum \limits _{k=0}^{M}\beta _{3}\left\| r_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2} +\sum \limits _{k=0}^{M}\beta _{3}\left\| r_{e}^{k+1}-r_{e}^{k}\right\| _{2}^{2}. \end{aligned}$$
(36)

Using the boundedness on the left of (36), we have

$$\begin{aligned} {\left\{ \begin{array}{ll} \lim \limits _{k\rightarrow \infty }\left\| h_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2}=0.\\ \lim \limits _{k\rightarrow \infty }\left\| {\mathbf {q}}_{e}^{k+1}-\nabla ^{2}u_{e}^{k+1}\right\| _{\mathrm {F}}^{2}=0.\\ \lim \limits _{k\rightarrow \infty }\left\| r_{e}^{k+1}-u_{e}^{k+1}\right\| _{2}^{2}=0. \end{array}\right. } \end{aligned}$$
(37)

and

$$\begin{aligned} {\left\{ \begin{array}{ll} \lim \limits _{k\rightarrow \infty }\left\| h^{k+1}-h^{k}\right\| _{2}^{2}=0,\\ \lim \limits _{k\rightarrow \infty }\left\| {\mathbf {q}}^{k+1}-{\mathbf {q}}^{k}\right\| _{\mathrm {F}}^{2}=0,\\ \lim \limits _{k\rightarrow \infty }\left\| r^{k+1}-r^{k}\right\| _{2}^{2}=0. \end{array}\right. } \end{aligned}$$
(38)

Due to the saddle point \((h^{*},{\mathbf {q}}^{*},r^{*},u^{*},\varrho _{1}^{*},\varvec{\varrho }_{2}^{*},\varrho _{3}^{*})\), the limitations in (37) furthermore imply that

$$\begin{aligned} {\left\{ \begin{array}{ll} \lim \limits _{k\rightarrow \infty }\left\| h^{k+1}-u^{k+1}+f\right\| _{2}^{2}=0.\\ \lim \limits _{k\rightarrow \infty }\left\| {\mathbf {q}}^{k+1}-\nabla ^{2}u^{k+1}\right\| _{\mathrm {F}}^{2}=0.\\ \lim \limits _{k\rightarrow \infty }\left\| r^{k+1}-u^{k+1}\right\| _{2}^{2}=0. \end{array}\right. } \end{aligned}$$
(39)

Based on the convexity of the primal problem in the problem (4), there exists a convergent sequence, without loss of generality by still setting  \(\left( u^{k},h^{k},{\mathbf {q}}^{k},r^{k}\right) \) such that

$$\begin{aligned} \lim \limits _{k \rightarrow \infty }\left( h^k,{\mathbf {q}}^k, r^k,u^k\right) =\left( \bar{h}^\star ,{\mathbf {q}}^\star ,r^\star ,u^\star \right) . \end{aligned}$$

Now we need to show that \(\left( \bar{h}^\star ,{\mathbf {q}}^\star ,r^\star ,u^\star \right) \) is the saddle point of the problem (4). In fact, combining (10)–(12) with (38)–(39) and taking the limitation, we can deduce that

$$\begin{aligned} {\left\{ \begin{array}{ll} h^\star =u^\star -f\\ {\mathbf {q}}^\star =\nabla ^{2}u^\star \\ r^\star =u^\star \end{array}\right. }\hbox {and} {\left\{ \begin{array}{ll} \lim \limits _{k\rightarrow \infty }\varrho _{1}^{k}=\varrho _{1}^\star ,\\ \lim \limits _{k\rightarrow \infty }\varvec{\varrho }_{2}^{k}=\varvec{\varrho }_{2}^\star ,\\ \lim \limits _{k\rightarrow \infty }\varrho _{3}^{k}=\varrho _{3}^\star . \end{array}\right. } \end{aligned}$$

This implies that \(\left( h^{\star },{\mathbf {q}}^{\star },r^{\star },u^{\star },\varrho _{1}^{\star }, \varvec{\varrho }_{2}^{\star },\varrho _{3}^{\star }\right) \) is a saddle point. That is to say, we can set \(\left( h^{\star },{\mathbf {q}}^{\star },r^{\star },u^{\star },\varrho _{1}^{\star }, \varvec{\varrho }_{2}^{\star },\varrho _{3}^{\star }\right) :=\left( h^{\star }, {\mathbf {q}}^{\star },r^{\star },u^{\star },\varrho _{1}^{\star }, \varvec{\varrho }_{2}^{\star },\varrho _{3}^{\star }\right) .\) Following from Lemma 2, we can deduce that \(\{u^k\}\) converges to the solution of the problem (4). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Zhang, J., Zhu, H. et al. A new hybrid regularization scheme for removing salt and pepper noise. Comp. Appl. Math. 41, 173 (2022). https://doi.org/10.1007/s40314-022-01869-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01869-4

Keywords

Mathematics Subject Classification

Navigation