Skip to main content
Log in

A meshfree technique for the numerical solutions of nonlinear Fornberg–Whitham and Degasperis–Procesi equations with their modified forms

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

An efficient and robust hybrid scheme based on radial basis functions (RBFs) and finite difference is implemented to solve nonlinear partial differential equations (PDEs). In the proposed method, first-order finite difference and the \(\theta \)-weighted scheme are coupled for temporal discretization, while RBFs are used for spatial discretization. The key feature of the scheme is to use quasilinearization with a collocation approach to reduce nonlinear PDEs to linear algebraic system of equations which are easy to solve. Stability analysis is carried out to examine the spectral radius of the amplification matrix versus the shape parameter. Furthermore, the scheme is applied to solve some nonlinear PDEs including Fornberg–Whitham, Degasperis–Procesi equations, and their modified forms. Efficiency of the proposed technique is demonstrated via different error norms and conservative quantities. Moreover, the computed results are compared with the existing results in the literature. Simulations reveal better accuracy for the considered problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abidi F, Omrani K (2010) The homotopy analysis method for solving the Fornberg-Whitham equation and comparison with Adomian’s decomposition method. Comput Math Appl 59(8):2743–2750

    Article  MathSciNet  Google Scholar 

  • Ablowitz MJ, Ablowitz M, Clarkson P, Clarkson PA (1991) Solitons, nonlinear evolution equations and inverse scattering, vol 149. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Anderson D, Tannehill J, Pletcher R (1984) Computational fluid mechanics and heat transfer. Hemisphere Publ Corp, New York

    MATH  Google Scholar 

  • Çelik İ (2021) Jacobi wavelet collocation method for the modified Camassa-Holm and Degasperis-Procesi equations. Eng Comput. https://doi.org/10.1007/s00366-020-01279-2

    Article  Google Scholar 

  • Coclite GM, Karlsen KH (2006) On the well-posedness of the Degasperis-Procesi equation. J Funct Anal 233(1):60–91

    Article  MathSciNet  Google Scholar 

  • Degasperis A, Holm DD, Hone AN (2002) A new integrable equation with peakon solutions. Theoret Math Phys 133(2):1463–1474

    Article  MathSciNet  Google Scholar 

  • Fasshauer GE, Zhang JG (2007) On choosing “optimal" shape parameters for RBF approximation. Numer Algorithms 45(1–4):345–368

    Article  MathSciNet  Google Scholar 

  • Feng B-F, Liu Y (2009) An operator splitting method for the Degasperis-Procesi equation. J Comput Phys 228(20):7805–7820

    Article  MathSciNet  Google Scholar 

  • Franke C, Schaback R (1998) Convergence order estimates of meshless collocation methods using radial basis functions. Adv Comput Math 8(4):381–399

    Article  MathSciNet  Google Scholar 

  • Golberg M, Chen C, Bowman H (1999) Some recent results and proposals for the use of radial basis functions in the BEM. Eng Anal Bound Elements 23(4):285–296

    Article  Google Scholar 

  • Gupta A, Saha Ray S (2017) Comparison between two reliable methods for accurate solution of fractional modified Fornberg-Whitham equation arising in water waves. J Comput Nonlinear Dyn 12(4):041004

    Article  Google Scholar 

  • Haq S, Hussain M (2018) Selection of shape parameter in radial basis functions for solution of time-fractional Black-Scholes models. Appl Math Comput 335:248–263

    MathSciNet  MATH  Google Scholar 

  • Hardy L (1971) Multi-quadric equations of topography and other irregular surface. J Geophys Res 76(8):1905–1915

    Article  Google Scholar 

  • He B, Meng Q, Li S (2010) Explicit peakon and solitary wave solutions for the modified Fornberg-Whitham equation. Appl Math Comput 217(5):1976–1982

    MathSciNet  MATH  Google Scholar 

  • Hoermann G, Okamoto H (2018) Weak periodic solutions and numerical case studies of the Fornberg-Whitham equation. arXiv preprint arXiv:1807.02320

  • Hon Y-C, Cheung KF, Mao X-Z, Kansa EJ (1999) Multiquadric solution for shallow water equations. J Hydraul Eng 125(5):524–533

    Article  Google Scholar 

  • Huang Y, Liu H, Yi N (2014) A conservative discontinuous Galerkin method for the Degasperis-Procesi equation. Methods Appl Anal 21(1):67–90

    Article  MathSciNet  Google Scholar 

  • Kansa EJ (1990) Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-i surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145

    Article  MathSciNet  Google Scholar 

  • Lu J (2011) An analytical approach to the Fornberg-Whitham type equations by using the variational iteration method. Comput Math Appl 61(8):2010–2013

    Article  MathSciNet  Google Scholar 

  • Madych W, Nelson S (1990) Multivariate interpolation and conditionally positive definite functions. II. Math Comput 54(189):211–230

    Article  MathSciNet  Google Scholar 

  • Micchelli CA (1986) Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr Approx 2(1):11–22

    Article  MathSciNet  Google Scholar 

  • Murray JD (1977) Lectures on nonlinear-differential-equation models in biology. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Raugel G (1995) Dynamics of partial differential equations on thin domains. In: Johnson R (ed) Dynamical systems. Lecture Notes in Mathematics. Springer, Berlin, pp 208–315

    Chapter  Google Scholar 

  • Ray SS, Gupta A (2015) A numerical investigation of time-fractional modified Fornberg-Whitham equation for analyzing the behavior of water waves. Appl Math Comput 266:135–148

    MathSciNet  MATH  Google Scholar 

  • Rippa S (1999) An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv Comput Math 11(2):193–210

    Article  MathSciNet  Google Scholar 

  • Sagar B, Ray SS (2021) Numerical soliton solutions of fractional Newell-Whitehead-Segel equation in binary fluid mixtures. Comput Appl Math 40(8):1–18

    Article  MathSciNet  Google Scholar 

  • Sagar B, Saha Ray S (2021) Numerical and analytical investigation for solutions of fractional Oskolkov-Benjamin-Bona-Mahony-Burgers equation describing propagation of long surface waves. Int J Mod Phys B 35:2150326

    Article  Google Scholar 

  • Suseelan M, Ahmad A, Hamid NNA, Ismail AIM (2018) Numerical solution of the degasperis-procesi equation using the quartic b-spline collocation method. In AIP Conference Proceedings, vol. 1974, p. 020082. AIP Publishing LLC

  • Uddin M (2014) On the selection of a good value of shape parameter in solving time-dependent partial differential equations using rbf approximation method. Appl Math Modell 38(1):135–144

    Article  MathSciNet  Google Scholar 

  • Uddin M, Haq S (2013) On the numerical solution of generalized nonlinear Schrodinger equation using radial basis functions. Miskolc Math Notes 14(3):1067–1084

    Article  MathSciNet  Google Scholar 

  • Vitanov N (2001) Upper bounds on the convective heat transport in a rotating fluid layer of infinite prandtl number: case of large taylor numbers. Eur Phys J B 23(2):249–266

    Article  Google Scholar 

  • Wasim I, Abbas M, Iqbal MK (2018) Numerical solution of modified forms of Camassa-Holm and Degasperis-Procesi equations via quartic b-spline collocation method. Commun Math Appl 9(3):393–409

    Google Scholar 

  • Wazwaz AM (2006) Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations. Phys Lett A 352(6):500–504

    Article  MathSciNet  Google Scholar 

  • Wazwaz A-M (2007) New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations. Appl Math Comput 186(1):130–141

    MathSciNet  MATH  Google Scholar 

  • Whitham GB (1967) Variational methods and applications to water waves. Proc R Soc Lond Series A Math Phys Sci 299(1456):6–25

    MATH  Google Scholar 

  • Wu H-Y, Duan Y (2016) Multi-quadric quasi-interpolation method coupled with FDM for the Degasperis-Procesi equation. Appl Math Comput 274:83–92

    MathSciNet  MATH  Google Scholar 

  • Yağmurlu M, Yildiz E, Yusuf U, Alaattin E (2021) Numerical investigation of modified Fornberg Whitham equation. Math Sci Appl e-Notes 9(2):81–94

    Google Scholar 

  • Yıldırım A (2010) Variational iteration method for modified Camassa-Holm and Degasperis-Procesi equations. Int J Numer Methods Biomed Eng 26(2):266–272

    Article  MathSciNet  Google Scholar 

  • Yu L (2012) Exact traveling wave solution of Degasperis-Procesi equation. Int J Nonlinear Sci 13(1):90–93

    MathSciNet  MATH  Google Scholar 

  • Zhang B-G, Li S-Y, Liu Z-R (2008) Homotopy perturbation method for modified Camassa-Holm and Degasperis-Procesi equations. Phys Lett A 372(11):1867–1872

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaf Shaheen.

Additional information

Communicated by Justin Wan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, S., Haq, S. & Ghafoor, A. A meshfree technique for the numerical solutions of nonlinear Fornberg–Whitham and Degasperis–Procesi equations with their modified forms. Comp. Appl. Math. 41, 183 (2022). https://doi.org/10.1007/s40314-022-01870-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01870-x

Keywords

Mathematics Subject Classification

Navigation