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Abstract
It is meaningful and valuable to find common fixed points of different nonexpansive-type
operators, which are associated with variational inequalities, integral equations, image pro-
cess and other optimization problems in real life. The purpose of this paper is to suggest
and consider a class of general semi-implicit iterative methods involving semi-implicit rule
and inaccurate computing errors, which extend the iterative algorithm introduced by Ali et
al. in 2020. Using Liu’s lemma, we analyze convergence and stability of the new iterative
approximations for common fixed points of three different nonexpansive-type operators. Fur-
thermore, we provide convergence rates of the new iterations and some numerical examples
to illustrate the efficiency and stability of the new iterative schemes. As an application of
our main results presented in this paper, we use the proposed iterative schemes to solve the
known Stampacchia variational inequality.
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Abbreviations
JF Iterative scheme introduced by Ali et al. (2020).
JFESD General semi-implicit approximation with errors for three different

nonexpansive-type operators.
JFSD Semi-implicit iteration for three different nonexpansive-type operators.
JFES Semi-implicit scheme with errors for a nonexpansive-type operator.
JFS Semi-implicit scheme for a nonexpansive-type operator.
PMMI Picard–Mann semi-implicit iteration with mixed errors for a nonexpansive-

type operator (Li and Lan 2019).
PMI Picard–Mann semi-implicit iterative process for a nonexpansive-type operator

(Li and Lan 2019).
MANN Mann iteration introduced by Mann (1953).
ISHIKAWA Ishikawa iterative process due to Ishikawa (1974).
NOOR Noor three-step iterative approximation scheme introduced by Noor (2007).
SAKURAI Novel fixed point algorithm formulated by Sakurai and Iiduka (2014).
Iter. The numbers of iteration.

1 Introduction

Let X be a Hilbert space and K ⊂ X be a nonempty closed convex bounded subset. For
i = 1, 2, 3, suppose that �i : K → K is a nonexpansive-type operator with Lipschitz
coefficient θi ∈ [0, 1], that is, ‖�i (x) − �i (y)‖ ≤ θi ‖x − y‖ for each x, y ∈ K . In this
paper, based on the iterative scheme (in short, JF) due to Ali et al. (2020), we introduce
and investigate the following general semi-implicit (also named as implicit midpoint rule)
approximation (in short, JFESD) with errors for �i (i = 1, 2, 3):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�n+1 = �1 ((1 − rn) ςn + rn�1(ςn) + rndn) ,

ςn = �2

(
ϑn + ςn

2

)

+ en,

ϑn = �3

(

(1 − sn)
ϑn + �n

2
+ sn�3

(
ϑn + �n

2

))

+ hn,

(1.1)

where {rn}, {sn} ⊆ [0, 1] are two real number sequences, and {dn}, {en} and {hn} are three
errors to take into account some possible inexact computations of the nonexpansive-type
operator points, which satisfy hypothesis (H):

(i) dn = d ′
n + d ′′

n with limn→∞ ‖d ′
n‖ = 0 and

∑∞
n=0 ‖d ′′

n ‖ < ∞;
(ii) limn→∞ ‖en‖ = 0; (iii)

∑∞
n=0 ‖hn‖ < ∞.

Some special cases of the JFESD (1.1) can be found as follows:

(Case 1) While dn, en, hn ≡ 0 for all n ∈ N, the JFESD (1.1) reduces to the following
semi-implicit iteration (in short, JFSD) for three different nonexpansive-type operators:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�n+1 = �1 ((1 − rn) ςn + rn�1(ςn)) ,

ςn = �2

(
ϑn + ςn

2

)

,

ϑn = �3

(

(1 − sn)
ϑn + �n

2
+ sn�3

(
ϑn + �n

2

))

.

(1.2)

(Case 2) If �1 = �2 = �3 = �, then the JFESD (1.1) is equivalent to a class of
semi-implicit scheme (in short, JFES) with errors for a nonexpansive-type operator as
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follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�n+1 = �((1 − rn) ςn + rn�(ςn) + rndn) ,

ςn = �

(
ϑn + ςn

2

)

+ en,

ϑn = �

(

(1 − sn)
ϑn + �n

2
+ sn�

(
ϑn + �n

2

))

+ hn .

(1.3)

(Case 3) When dn = en = hn ≡ 0 for each n ∈ N, the JFES (1.3) becomes the following
new semi-implicit iterative process (in short, JFS) for a nonexpansive-type operator:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�n+1 = �((1 − rn) ςn + rn�(ςn)) ,

ςn = �

(
ϑn + ςn

2

)

,

ϑn = �

(

(1 − sn)
ϑn + �n

2
+ sn�

(
ϑn + �n

2

))

.

(1.4)

Remark 1.1 (i) In regard to nonexpansive-type operator �i for i = 1, 2, 3 in (1.1)–(1.4), one
can see that �i is nonexpansive if the Lipschitz coefficient θi = 1; and when θi ∈ [0, 1),
�i becomes a contraction operator. Furthermore, if θi > 0 for i = 1, 2, 3, then �i is called
θi -Lipschitzian continuous. In other words, for i = 1, 2, 3, nonexpansive-type operator with
Lipschitz coefficient θi is said to be θi -Lipschitz continuous operator, here θi ≤ 1.

(ii) We note that the above iterative processes (1.1)–(1.4) are brand new and not reported
in the literature.

Example 1.1 It is well known that the projection operator PK : Rn → R
n defined by

PK (x) = argmin
z∈K ‖z − x‖22, (1.5)

is a nonexpansive-type operator with Lipschitz coefficient 1 and it is widely used to solve
variational inequality, which is an important branch of optimization and was introduced in
the early sixties by the study of mechanics.

Remark 1.2 For some i = 1, 2, 3, when �i = PK , the projection operator in Example 1.1,
it is easy to see that the iterations (1.1)–(1.4) are still different from Algorithms 2.2–2.6 in
Noor (2007).

As we all know, research of nonexpansive-type operators has a long history, one of the
most important fields is to find fixed points via applying fixed point theory. In fact, many
problems can be formulated as fixed point models or can be solved by fixed point theory.
For example, the whole world has been profoundly impacted by the novel coronavirus since
2019 and it is imperative to depict the spread of the coronavirus. Panda et al. (2021) applied
fractional derivatives to improve the 2019-nCoV/SARS-CoV-2 models, and by means of
fixed point theory, existence and uniqueness of solutions of the models were proved. More
applications of fixed point theory, such as equations, image process and other optimization
problems, one can refer to Cacciapaglia and Sannino (2021); Ali et al. (2022); Panda et al.
(2020); Harker and Pang (1990); Ali et al. (2020);Maldar (2021); Hanjing and Suantai (2020)
and the reference therein.

In 1922, S. Banach first used the Picard iteration method to create a fixed point theorem
in metric spaces, that is the famous Banach contraction principle. After that, many scholars
introduced a lot of iteration methods, such asMann iteration (in short, MANN) (Mann 1953),
Ishikawa iterative process (in short, ISHIKAWA) (Ishikawa 1974), Noor three-step iterative
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approximation scheme (in short, NOOR) (Noor 2007; Noor and Yao 2007), novel fixed point
algorithm (in short, SAKURAI) (Sakurai and Iiduka 2014) and so on, to approximate fixed
points of various nonexpansive-type operators and obtained others fixed point theorems, see
(Thakur et al. 2016) and the reference therein. Recently, to answer the question: Is it possible
to define a new iterative scheme, whose rate of convergence is better than that of some known
and leading iterative schemes, for generalized nonexpansive-type operators due to Hardy and
Rogers? Ali et al. (2020) considered the JF as follows:

⎧
⎨

⎩

xn+1 = �((1 − rn)yn + rn�(yn)) ,

yn = �(zn),
zn = �((1 − sn)xn + sn�(xn)) ,

(1.6)

where rn, sn ∈ (0, 1) are two sequences, and studied the conditions of weak and strong
convergence for (1.6) to a generalized self-map � on a nonempty closed convex subset of a
Banach space. The numerical examples in Ali et al. (2020) indicate that the JF (1.6) is much
faster than some existing algorithms.

Remark 1.3 It is worth noting that the semi-implicit terms in the second and third equations
of the JFS (1.4) replace the corresponding terms of the JF (1.6).

On the one hand, to solve nonlinear problems arising in mechanics, economics, optimiza-
tion, differential equations and others mathematics and engineering problems, variational
inequalities mentioned in Example 1.1 have become efficient tools and have been paid great
attention by many scholars. See, for example, Daniele et al. (2003); Harker and Pang (1990);
Noor and Yao (2007); Phannipa and Atid (2021); Noor (2007) and the reference therein.

In 1964, Stampacchia (1964) considered the following variational inequality problem of
finding a point u ∈ K such that

〈F(u), v − u〉 ≥ 0, ∀v ∈ K , (1.7)

where K is a nonempty, closed and convex set of a real Hilbert space X, and 〈·, ·〉 is the
inner product in X, F : K → K is a specific nonlinear operator. The set of solutions for the
variational inequality (1.7) is denoted by V I (K , F). As everyone knows that the problem
(1.7) is equivalent to the following fixed point problem:

u = PK (u − κF(u)), (1.8)

here κ is a positive constant and PK is the projection operator formulated as in (1.5). There are
manymethods to solve the inequality problems of the form (1.7) (see Harker and Pang 1990),
which include excellent numerical behaviors based on projection and contraction operator
techniques.

For seeking common fixed points of nonexpansive-type operators and variational inequal-
ities, Noor and Yao (2007) introduced some iterative schemes with projection operators and
proved convergence of the iterative algorithms. To get strong convergence in more weak
conditions, Phannipa and Atid (2021) introduced an iteration scheme and showed that the
iteration scheme strongly converges to a common fixed point of nonexpansive-type opera-
tors and variational inequalities in Hilbert spaces. Very recently, based on the fundamental
relation between variational inequality and fixed point problem presented in (1.8), Maldar
(2021) reformulated the NOOR, JF (1.6) and some other iterative algorithms to approxi-
mate the common fixed points of generalized nonexpansive-type mappings and solutions of
variational inequality problems.
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On the other hand, the semi-implicit rule is a powerful numerical method for solving
ordinary differential equations (Deuflhard 1985), differential algebraic equations (Schneider
1993). In addition, as an approximation method, some authors applied semi-implicit rule to
iterative scheme of nonexpansive-type operators. Alghamdi et al. (2014) established a semi-
implicit rule for nonexpansive-type operators and provedweak convergence of the iteration in
Hilbert spaces, andused the algorithm to solve a nonlinear time-dependent evolution equation.
Based on the semi-implicit rule, Luo and Cai (2017) and Aibinu et al. (2018) developed
viscosity algorithms for nonexpansive-type operators and stated that these algorithms can
strongly converge to a fixed point in smooth Banach spaces.

While calculating every iteration, errors will occur naturally, so it is worth of studying
convergence of algorithms with errors. Liu (1995) first established ISHIKAWA and MANN
with errors and proved that the iterations strongly converge to the unique solution of the
accretive operator equations in Banach spaces. Following the work of Liu (1995), Chang
et al. (2003) studied ISHIKAWA with mixed errors of nonexpansive-type operators, and
found necessary and sufficient conditions for the iterative sequence to strongly converge
to a fixed point in Banach spaces. Ni and Yao (2015) constructed a modified ISHIKAWA
with errors for nonexpansive-type operator, and obtained strong convergence of the iterative
algorithm in reflexive Banach spaces under suitable conditions.

By the importance of stable and unstable equilibria are really different in dynamics sys-
tems, the stability of equilibrium points should be investigated seriously. Lemaire (1996)
may be the first one to investigate the stability of the iteration method for nonexpansive-type
operators. In 2017, Alber (2017) proved weak and strong convergence and stability of some
iteration schemes with perturbations in a Banach space. Lately, Li and Lan (2019) proposed
convergence and stability analysis of new Picard–Mann iteration processes with errors for
the semi-implicit rules of two different nonexpansive-type operators, and proved iterative
approximation of solutions for a class of optimal control problems with elliptic boundary
value constraint. Furthermore, Li and Lan (2019) gave numerical examples to show that the
new Picard–Mann iteration process withmixed errors is more effective than the Picard–Mann
semi-implicit iteration (in short, PMMI) with mixed errors, the Picard–Mann semi-implicit
iterative process (in short, PMI) and other related iterative processes for a nonexpansive-type
operator. And then, Ali et al. (2021) defined Picard’s three-step iteration for approximating
fixed points of Zamfirescu operators which contain contraction mappings, and proved the
iteration is almost T -stable and compared convergence of the three-step iteration with that
of some leading iterative processes.

On the basis of Ali et al. (2020), Li and Lan (2019) and other work mentioned above,
to obtain a fast and stable iterative scheme of nonexpansive-type operators and to solve the
variational inequality (1.7), we explored the JFESD (1.1) and its special case (1.2)–(1.4).
Then, we analyze convergence and stability of the sequences generated by (1.1)–(1.4) in
Hilbert spaces, and obtain convergence rate of the schemes (1.1)–(1.4). Finally, we provide
some numerical examples to illustrate that our schemes aremore effective than other aforesaid
known iterative schemes and apply the general semi-implicit approximation (1.1) to solve
Stampacchia variational inequality (1.7).
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2 Main results

In this section, we introduce a useful definition and an important lemma, and prove con-
vergence and stability of the JFESD (1.1). Furthermore, using our iteration scheme JFESD
(1.1), an integral equation as a numerical example shall be solved.

Definition 2.1 Let (X, d) be a metric space, � : X → X be a given operator and �0 ∈ X.
Assume that the iteration scheme {�n} generated by

�n+1 = f (�, �n),

converges to a fixed point u of�, i.e., u ∈ Fix(�) := {x ∈ X| �(x) = x}. Taking {ςn} be an
arbitrary sequence in X and setting εn = d (ςn+1, f (�, ςn)) for n ∈ N, then the fixed point
iteration procedure {�n} is called �-stable or stable with respect to �, and limn→∞ εn = 0
if and only if limn→∞ ςn = u.

Lemma 2.1 (Liu 1995) Let {an}, {bn} and {cn} be three nonnegative real sequences meeting:

an+1 ≤ (1 − tn)an + bn + cn

with tn ∈ [0, 1], ∑∞
n=0 tn = ∞, bn = o(tn), and

∑∞
n=0 cn < ∞. Then limn→∞ an = 0.

In the sequel, we give convergence and stability analysis of the JFESD (1.1) via using
Lemma 2.1 and Definition 2.1.

Theorem 2.1 Let K be a nonempty closed convex bounded subset of Hilbert space X. If
for i = 1, 2, 3, �i : K → K is a nonexpansive-type operator with Lipschitz coefficient
θi ∈ [0, 1] satisfying ∑3

i=1 θi < 3 and Fix(�1 ∩ �2 ∩ �3) �= ∅,
then the following statements hold:

(i) The iterative sequence {�n} generated by JFESD (1.1) converges to �∗ ∈ Fix(�1 ∩
�2 ∩ �3) with convergence rate for every step (i.e., n ∈ N):

ρn = θ1θ2θ3 · [1 − rn(1 − θ1)] [1 − sn(1 − θ3)]

(2 − θ2) {2 − θ3 [1 − sn(1 − θ3)]} ,

and there exists a constant ρ ∈ (0, 1] such that limn→∞ ρn < ρ.
(ii) For any sequence {wn} ⊂ X, limn→∞ wn = �∗ if and only if limn→∞ εn = 0, here
{εn} is generated by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εn = ‖wn+1 − �1 ((1 − rn) ηn + rn�1ηn + rndn)‖ ,

ηn = �2

(
ηn + ξn

2

)

+ en,

ξn = �3

(

(1 − sn)
ξn + wn

2
+ sn�3

(
ξn + wn

2

))

+ hn .

(2.1)

Scilicet, the JFESD (1.1) is �-stable.
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Proof First, we prove convergence of the iterative scheme JFESD (1.1). Let �∗ ∈ Fix(�1 ∩
�2 ∩ �3). Then by (1.1), one has

∥
∥ϑn − �∗∥∥ ≤

∥
∥
∥
∥�3

(

(1 − sn)
ϑn + �n

2
+ sn�3

(
ϑn + �n

2

))

− �3
(
�∗)

∥
∥
∥
∥ + ‖hn‖

≤ θ3

∥
∥
∥
∥(1 − sn)

ϑn + �n

2
+ sn�3

(
ϑn + �n

2

)

− �∗
∥
∥
∥
∥ + ‖hn‖

≤ θ3 (1 − sn)

∥
∥
∥
∥
ϑn + �n

2
− �∗

∥
∥
∥
∥ + θ23 sn

∥
∥
∥
∥
ϑn + �n

2
− �∗

∥
∥
∥
∥ + ‖hn‖

≤ ιn

2

(∥
∥ϑn − �∗∥∥ + ∥

∥�n − �∗∥∥) + ‖hn‖ ,

where ιn = θ3 (1 − sn + θ3sn), this indicates that

∥
∥ϑn − �∗∥∥ ≤ ιn

2 − ιn

∥
∥�n − �∗∥∥ + 2

2 − ιn
‖hn‖ . (2.2)

Furthermore, it follows from the second formulation of (1.1) that

∥
∥ςn − �∗∥∥ ≤ θ2

∥
∥
∥
∥
ϑn + ςn

2
− �∗

∥
∥
∥
∥ + ‖en‖

≤ θ2

2

(∥
∥ϑn − �∗∥∥ + ∥

∥ςn − �∗∥∥) + ‖en‖ ,

this implies with (2.2) and ιn ≤ θ3 for n ∈ N that

∥
∥ςn − �∗∥∥ ≤ θ2

2 − θ2

∥
∥ϑn − �∗∥∥ + 2

2 − θ2
‖en‖

≤ θ2ιn

(2 − θ2) (2 − ιn)

∥
∥�n − �∗∥∥

+ 2θ2
(2 − θ2) (2 − θ3)

‖hn‖ + 2

2 − θ2
‖en‖ . (2.3)

Taking τn = θ1 (1 − rn + θ1rn), then τn ≤ θ1 for n ∈ N and by (1.1) and (2.3), and
{rn}, {sn} ⊆ [0, 1], now we know that for each n ∈ N:

∥
∥�n+1 − �∗∥∥ ≤ θ1

∥
∥(1 − rn) ςn + rn�1ςn + rndn − �∗∥∥

≤ θ1 (1 − rn)
∥
∥ςn − �∗∥∥ + θ1

2rn
∥
∥ςn − �∗∥∥ + θ1 ‖rndn‖

≤ τn
∥
∥ςn − �∗∥∥ + θ1rn(

∥
∥d ′

n

∥
∥ + ∥

∥d ′′
n

∥
∥)

≤ (1 − tn)
∥
∥�n − �∗∥∥ + 2θ2θ1

(2 − θ2) (2 − θ3)
‖hn‖

+ 2θ1
2 − θ2

‖en‖ + θ1rn(
∥
∥d ′

n

∥
∥ + ∥

∥d ′′
n

∥
∥), (2.4)
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where

tn = (2 − θ2)(2 − ιn) − θ2τnιn

(2 − θ2)(2 − ιn)

≥ 1

4
{[1 + (1 − θ2)] [1 + (1 − θ3)] − θ1θ2θ3}

> 0,

1 − tn = θ2τnιn

(2 − θ2) (2 − ιn)
≥ 0,

which is because τn ∈ [0, θ1], ιn ∈ [0, θ3], ∑3
i=1 θi < 3, θi ∈ [0, 1] for i = 1, 2, 3, and

there exists i ∈ {1, 2, 3} such that θi < 1, i.e., θ1θ2θ3 < 1. Therefore, one has a lower bound
t∗ > 0 of {tn} ⊆ [0, 1], that is t∗ = lim infn→∞ tn ∈ (0, 1]. Furthermore, we can easily know
that

∑∞
n=0 tn = ∞. Thus it follows from (2.4) that

∥
∥�n+1 − �∗∥∥ ≤ (1 − tn)

∥
∥�n − �∗∥∥ + tn

[
2θ1

t∗(2 − θ2)
‖en‖ + θ1rn

t∗
∥
∥d ′

n

∥
∥

]

+
[

2θ1θ2
(2 − θ2) (2 − θ3)

‖hn‖ + θ1rn
∥
∥d ′′

n

∥
∥

]

. (2.5)

By Lemma 2.1, the inequality (2.5) yields with the boundedness of {rn} and the condition
(H) that ‖�n − �∗‖ as n → ∞, i.e., the sequence {�n} generated by the JFESD (1.1) strongly
converges to �∗ with convergence rate in every step:

ρn = θ1θ2θ3 · [1 − rn(1 − θ1)] [1 − sn(1 − θ3)]

(2 − θ2) {2 − θ3 [1 − sn(1 − θ3)]} .

Next, we prove the iterative scheme JFESD (1.1) is �-stable. First, we show that if
limn→∞ εn → 0, then limn→∞ wn → 0. In fact, it follows from (2.1) that

εn = ‖wn+1 − �1 ((1 − rn) ηn + rn�1ηn + rndn)‖
≥ ∥

∥wn+1 − w∗∥∥ − ∥
∥�1 ((1 − rn) ηn + rn�1ηn + rndn) − w∗∥∥ ,

which implies with (2.5) that
∥
∥wn+1 − w∗∥∥ ≤ εn + ∥

∥�1 ((1 − rn) ηn + rn�1ηn + rndn) − w∗∥∥

≤ (1 − tn)
∥
∥wn − w∗∥∥ + tn

[
1

t∗
εn + 2θ1

t∗(2 − θ2)
‖en‖ + θ1rn

t∗
∥
∥d ′

n

∥
∥

]

+
[

2θ1θ2
(2 − θ2) (2 − θ3)

‖hn‖ + θ1rn
∥
∥d ′′

n

∥
∥

]

.

Hence, if limn→∞ εn → 0, then from Lemma 2.1 and the given conditions, we get
limn→∞ ‖wn − w∗‖ → 0 and limn→∞ wn = w∗.

Whereas, if limn→∞ wn = w∗, by (2.4) and the assumptions, one knows that

εn = ‖wn+1 − �1 ((1 − rn) ηn + rn�1ηn + rndn)‖
≤ (1 − tn)

∥
∥wn − w∗∥∥ + 2θ1

2 − θ2
‖en‖ + θ1rn

∥
∥d ′

n

∥
∥

+ 2θ2θ1
(2 − θ2) (2 − θ3)

‖hn‖ + θ1rn
∥
∥d ′′

n

∥
∥ → 0,

this shows that limn→∞ εn → 0. The proof is completed. ��
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From Theorem 2.1, it is easy to obtain the following results to the special cases (1.2)–(1.4)
of the JFESD (1.1).

Corollary 2.1 Suppose that X, K and operator �i (i = 1, 2, 3) are the same as in
Theorem 2.1. Then the sequence {�n} generated by the JFSD (1.2) converges to �∗ ∈
Fix(�1 ∩ �2 ∩ �3) with convergence rate for n ∈ N:

ρn = θ1θ2θ3 · [1 − rn(1 − θ1)] [1 − sn(1 − θ3)]

(2 − θ2) {2 − θ3 [1 − sn(1 − θ3)]} ,

and there exists a positive constant ρ such that ρn < ρ ≤ 1 for any n ∈ N. Moreover, for
any sequence {wn} ⊂ X, lim

n→∞ wn = w∗ if and only if lim
n→∞ εn = 0, here εn is defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εn = ‖wn+1 − �1 ((1 − rn) ηn + rn�1ηn)‖ ,

ηn = �2

(
ηn + ξn

2

)

,

ξn = �3

(

(1 − sn)
ξn + wn

2
+ sn�3

(
ξn + wn

2

))

,

i.e., the iteration scheme JFSD (1.2) is �-stable.

Corollary 2.2 LetX and K be the same as in Theorem 2.1. If�1 = �2 = �3 = � : K → K
is nonexpansive-type operator with Lipschitz coefficient θ ∈ [0, 1) and Fix(�) �= ∅, then
the sequence {�n} generated by the JFES (1.3) converges to �∗ ∈ Fix(�) with convergence
rate:

ρn = θ3 [1 − rn(1 − θ)] [1 − sn(1 − θ)]

(2 − θ) {2 − θ [1 − sn(1 − θ)]} (2.6)

for every n ∈ N and there exists a constant ρ ∈ (0, 1] such that ρn < ρ for n ∈ N.
Furthermore, letting a sequence {εn} be decided by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εn = ‖wn+1 − �((1 − rn) ηn + rn�ηn + rndn)‖ ,

ηn = �

(
ηn + ξn

2

)

+ en,

ξn = �

(

(1 − sn)
ξn + wn

2
+ sn�

(
ξn + wn

2

))

+ hn,

then for any sequence {wn} ⊂ X, limn→∞ wn = w∗ if and only if lim
n→∞ εn = 0 and the

iteration scheme JFES (1.3) is called �-stable.

Corollary 2.3 Assume that X, K and � are the same as in Corollary 2.2. then the sequence
{xn} determined by the JFS (1.4) converges to �∗ ∈ Fix(�) with convergence rate ρn of
(2.6) in every step. Furthermore, for any sequence {wn} ⊂ X, limn→∞ wn = w∗ if and only
if limn→∞ εn = 0, where εn is confirmed as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εn = ‖wn+1 − �((1 − rn) ηn + rn�ηn)‖ ,

ηn = �

(
ηn + ξn

2

)

,

ξn = �

(

(1 − sn)
ξn + wn

2
+ sn�

(
ξn + wn

2

))

,

that is, the iteration scheme JFS (1.4) is �-stable.
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To verify our results, we give a numerical example as follows.

Example 2.1 We consider a known integral equation, which often arises in many physical
problems, defined as

f (�) = a +
∫ �

0
k(�, ς) f (ς)dς, ∀� ∈ [0, l], (2.7)

where l and a = f (0) are real constants, and k : R×R → R is a given continuous function.

From Eq. (2.7), one can easily decide an operator � : R → R by

�( f ) := �( f (�)) = a +
∫ �

0
k(�, ς) f (ς)dς, ∀� ∈ [0, l], f ∈ R, (2.8)

and knows that if sup�∈[0,l]
∫ �

0 ‖k(�, ς)‖ dς < 1, then � is a nonexpansive-type operator. In
fact, for any f , g ∈ R, we have

‖�( f ) − �(g)‖ = sup
�∈[0,l]

∥
∥
∥
∥

∫ �

0
k(�, ς) · [ f (ς) − g(ς)] dς

∥
∥
∥
∥

≤
(

sup
�∈[0,l]

∫ �

0
‖k(�, ς)‖ dς

)

‖ f − g‖.

By Banach contraction mapping principle, the operator � has a fixed point, which is the
solution of Eq. (2.7).

With regard to (2.7) and (2.8), taking a = 1, l = 9
10 and k(·, ·) ≡ 1, then by simple

calculation, one can easily see that sup�∈[0,l]
∫ �

0 ‖k(�, ς)‖ dς = 9
10 < 1 and an exact solution

of the following example of (2.7):

f (�) = 1 +
∫ �

0
f (ς)d(ς) (2.9)

is f (�) = e� for every � ∈ [
0, 9

10

]
, which is a fixed point of special operator � to (2.9).

In subsequent work, the exact solution of the particular case (2.9) shall be numerically
approximated via using our new iterative schemes JFESD (1.1) and JFSD (1.2). Assume

�1 = �, �2 = �3 = I , the identity operator, rn = 0.3, sn = 0.5, d ′
n = n2

10n , d
′′
n = n

10n ,
en = 1

5n , hn = 10
8n for each n ∈ N, and the initial function f (�) = � is given. Then the

numerical solutions after some steps are displayed in Figs. 1 and 2, and mean square errors
(in short, MSE) of JFESD (1.1) and JFSD (1.2) have been computed in Fig. 3. It is light
to see that the iteration schemes JFESD (1.1) and JFSD (1.2) can fastly converge to the
exact solution of (2.9), respectively, and although the convergence speed to JFESD (1.1) and
JFSD (1.2) are not the same, the numbers of iteration (in short, Iter.) for converging to the
precise solution are no more than twenty . These indicate the validity of Theorem 2.1 and
Corollary 2.1.

3 Simulation and applications

In this section, using the new iterative schemes presented in this paper and based on Matlab
2020b and R 4.1, we will propose two numerical simulation examples for approximating
fixed points of nonexpansive-type operators and to check on the efficiency of our methods.
Furthermore, we apply the new scheme JFESD (1.1) to solve the variational inequality (1.7).
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Fig. 1 Approximating solutions
of (2.9) by the JFESD (1.1)

Fig. 2 Approximating solutions
of (2.9) by the JFSD (1.2)

Example 3.1 Let K = [0,+∞], �(�) = √
�2 − 6� + 30, and for any n ∈ N, rn = sn = 1

2 ,

d ′
n = n2

10n , d
′′
n = n

10n , en = 1
5n and hn = 10

8n .

In Li and Lan (2019), Li and Lan proved the operator � is a nonexpansive-type operator
and showed that one fixed point of � is 5. Now we will use our new iteration schemes to
approximate the fixed points of �. To make clear that our schemes are better than others,
we generate 1000 random initial points between 0 and 20, and set the stop condition as
‖�n+1 − �n‖ ≤ ε, here ε = 10−5, 10−10. The numerical simulation results for two special
cases of the JFESD (1.1): JFES (1.3) and JFS (1.4), and some others known schemes JF,
PMMI, PMI, MANN, ISHIKAWA, NOOR and SAKURAI are appeared in Figs. 4 and 5.

In Fig. 4, horizontal axis means different iterative schemes, vertical axis is the Iter. of
iterative schemes with different stopped conditions. From Fig. 4, one can easily see that
the JFS (1.4) converges faster than other schemes under given stopped conditions, and they
are nearly not affected by initial points. In Fig. 5, horizontal axis means different iterative
schemes, vertical axis means the final approximated value, it is clear that the JFES (1.2)
stably converges to a fixed point for the given nonexpansive-type operator.
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Fig. 3 MSE of the JFESD (1.1)
and the JFSD (1.2) for (2.9)

Fig. 4 Comparison of Iter. with random initial values and different tolerances for Example 3.1

Example 3.2 Take K = [0,+∞], rn = sn = 1
2 , d

′
n = n2

10n , d
′′
n = n

10n , en = 1
5n and hn = 10

8n

for all n ∈ N, and define �i = � for i = 1, 2, 3 as

�(�) = 1

2

(

sin � + cos � + 1

2
�

)

+ 3π + 2

4
, (3.1)

where � ∈ [0,∞).

From (3.1), we know that one fixed point of � is π and

|�(�) − �(ς)| ≤ 1

4
|� − ς | + 1

2
|[sin(�) − sin(ς)] + [cos(�) − cos(ς)]|

= 1

4
|� − ς | +

∣
∣
∣
∣cos

(
� + ς

2

)

− sin

(
� + ς

2

)∣
∣
∣
∣ ·

∣
∣
∣
∣sin

(
� − ς

2

)∣
∣
∣
∣

≤ 3

4
|� − ς |,
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Fig. 5 Final approximations with different initial values and tolerances for Example 3.1

which shows that � is a nonexpansive-type operator. It follows from Theorem 2.1 that
the JFESD (1.1) and its some special cases can approximate the fixed point of �. Indeed,
taking �0 = 18.5, absolute errors of the iterative schemes JFES, JFS, JF, PMMI, MANN,
ISHIKAWA,NOOR and SAKURAI for Example 3.2 are listed in Table 1, and one can readily
see that the absolute error of our new iteration scheme JFS (1.4) becomes to 0 at the soonest.
This implies that the JFS (1.4) is the best one of the compared eight schemes.

We note that from the fixed point problem (1.8), if the second ςn in the first equation of
the JFESD (1.1) is substituted by PK (ςn − κF(ςn)), where the projection operator PK is the
same as in (1.5), F is a nonlinear operator on K and κ is a positive constant, then the JFESD
(1.1) is equivalent to the following iteration:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�n+1 = �1 ((1 − rn) ςn + rn�1(PK (ςn − κF(ςn))) + rndn) ,

ςn = �2

(
ϑn + ςn

2

)

+ en,

ϑn = �3

(

(1 − sn)
ϑn + �n

2
+ sn�3

(
ϑn + �n

2

))

+ hn,

(3.2)

where {rn} , {sn} , {dn}, {en} and {hn} are the same sequences as in (1.1). Thus, the iterative
process (3.2), as an application of the new iteration scheme JFESD (1.1), can be deemed
to find common fixed points of operator �i for i = 1, 2, 3 and solutions of Stampacchia
variation inequality (1.7). This shall be proposed at the end of this section.

Theorem 3.1 Let X be a Hilbert space endowed with the norm ‖ · ‖ and an inner product
〈·, ·〉, and K ⊂ X be a nonempty closed convex bounded set. Suppose that the following
conditions hold:

(C1) For i = 1, 2, 3, �i : K → K is nonexpansive-type operator with Lipschitz coeffi-
cient θi ∈ [0, 1] and Fix(�1 ∩ �2 ∩ �3) ∩ V I (K , F) �= ∅.
(C2) rn ∈ (0, 1] for all n ∈ N and limn→∞ rn �= 0 or limn→∞ rn does not exist .
(C3) F : K → K is a μ-Lipschitzian continuous and σ -strongly monotone operator,
i.e., if there exists a constant σ > 0 such that 〈F(x) − F(y), x − y〉 ≥ σ‖x − y‖2 for
all x, y ∈ K.
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(C4) The constant κ , which is the same constant as in (1.8), satisfies

κ ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0,∞), if θ1 = 0.
⎛

⎝0,
σ +

√

σ 2 + μ2θ−1
1 (1 − θ1)

μ2

⎞

⎠ , if θ1 �= 0,
(3.3)

Then convergence and stability of the iteration (3.2) can be analyzed as follows:

(i) The iterative sequence {�n} defined by (3.2) converges to Fix(�1 ∩ �2 ∩ �3) ∩
V I (K , F) with convergence rate:

ρ̂n = θ1θ2θ3 · [1 − rn(1 − υθ1)][1 − sn(1 − θ3)]
(2 − θ2){2 − θ3[1 − sn(1 − θ3)]}

for any n ∈ N, where υ = √
1 − 2κσ + κ2μ2, and there exists a constant ρ̂ ∈ (0, 1]

such that ρ̂n < ρ̂.
(ii) For any sequence {wn} ⊂ X, limn→∞ wn = w∗ if and only if limn→∞ εn = 0, here
εn decided by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εn = ‖wn+1 − �1 ((1 − rn) ηn + rn�1 (PK (ηn − κF(ηn))) + rndn)‖ ,

ηn = �2

(
ηn + ξn

2

)

+ en,

ξn = �3

(

(1 − sn)
ξn + wn

2
+ sn�3

(
ξn + wn

2

))

+ hn,

(3.4)

namely, the iteration scheme (3.2) is �-stable.

Proof By the condition (C3), one gets

μ‖x − y‖2 ≥ ‖F(x) − F(y)‖ · ‖x − y‖ ≥ 〈F(x) − F(y), x − y〉 ≥ σ‖x − y‖2
for any x, y ∈ K , i.e., μ ≥ σ and knows that 1− 2κσ + κ2μ2 ≥ 0. Setting �∗ ∈ Fix(�1 ∩
�2 ∩�3)∩V I (K , F), that is, �∗ ∈ K is a common fixed point of operator�i for i = 1, 2, 3
and a solution of Stampacchia variational inequality (1.7), then it follows that

∥
∥ςn − �∗ − κ

[
F(ςn) − F(�∗)

]∥
∥2

= ∥
∥ςn − �∗∥∥2 − 2

〈
ςn − �∗, κ

[
F(ςn) − F(�∗)

]〉 + ∥
∥κ

[
F(ςn) − F(�∗)

]∥
∥2

≤ (
1 − 2κσ + κ2μ2) ∥

∥ςn − �∗∥∥2 ,

and so
∥
∥ςn − �∗ − κ

[
F(ςn) − F(�∗)

]∥
∥ ≤ υ

∥
∥ςn − �∗∥∥ , (3.5)

here υ = √
1 − 2κσ + κ2μ2. By (3.2), Example 1.1 and (3.5), now we know that

∥
∥�n+1 − �∗∥∥ = ∥

∥�1 ((1 − rn) ςn + rn�1 (PK (ςn − κF(ςn))) + rndn) − �∗∥∥

≤ θ1

[
(1 − rn)

∥
∥ςn − �∗∥∥ + ‖rndn‖

+rn
∥
∥�1 (PK (ςn − κF(ςn))) − �1

(
PK (�∗ − κF(�∗))

)∥
∥

]

≤ θ1(1 − rn)
∥
∥ςn − �∗∥∥ + θ1rn(

∥
∥d ′

n

∥
∥ + ∥

∥d ′′
n

∥
∥)

+rnθ
2
1

∥
∥ςn − �∗ − κ

(
F(ςn) − F(�∗)

)∥
∥

≤ τ̂n
∥
∥ςn − �∗∥∥ + θ1rn(

∥
∥d ′

n

∥
∥ + ∥

∥d ′′
n

∥
∥), (3.6)
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where τ̂n = θ1 [(1 − rn) + υθ1rn], as the condition (C4) intends that τ̂n = 0 < 1 is always
right if θ1 = 0. Otherwise, it is easy to see that υ < θ−1

1 when θ1 �= 0 and τ̂n < θ1 by
the condition (C2). Thus, it follows from the condition (C1) that there exists a constant
t̂∗ = lim infn→∞ t̂n ∈ (0, 1], where t̂n = (4−2θ2−2ιn)+θ2ιn(1−τ̂n)

(2−θ2)(2−ιn)
. Hence, for each n ∈ N,

replacing τn , t∗ and 1 − tn in (2.4) by τ̂n , t̂∗ and 1 − t̂n = θ2 τ̂n ιn
(2−θ2)(2−ιn)

in several, where
ιn is the same as in (2.2), then similar to the proof of Theorem 2.1, it follows from (2.3),
(3.6), τ̂n < θ1 and Lemma 2.1 that ‖�n − �∗‖ as n → ∞, i.e., the sequence {�n} strongly
converges to �∗ with the following convergence rate in every step:

ρ̂n = θ1θ2θ3 · [1 − rn(1 − υθ1)][1 − sn(1 − θ3)]
(2 − θ2){2 − θ3[1 − sn(1 − θ3)]} .

The rest proof can be immediately obtained from the proof of Theorem 2.1 and so it is
omitted. ��
Remark 3.1 (i) One can easily see that the difference between the JFESD (1.1) and the
iteration (3.2) is only the second ςn in the first equation of (1.1), which depends on the
equivalence of Stampacchia variational inequality (1.7) and the fixed point problem (1.8).
That is to say, solving the inequality (1.7) is equivalent to finding common fixed points of
nonexpansive-type operators �1, �2, �3 and PK .

(ii) As projection operator is a nonexpansive-type operator, and the conditions (C1) and
(C2) in Theorem 3.1 separately mean θi = 1 for i = 1, 2, 3 and the lower bound of t̂n exists,
the operator �i with Lipschitz coefficient θi ∈ [0, 1] in (3.2) can be replaced by projection
operator for each i = 1, 2, 3, and so one can get a new iteration scheme with errors for the
variational inequality (1.7) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�n+1 = PK ((1 − rn) ςn + rn PK (PK (ςn − κFςn)) + rndn) ,

ςn = PK

(
ϑn + ςn

2

)

+ en,

ϑn = PK

(

(1 − sn)
ϑn + �n

2
+ sn PK

(
ϑn + �n

2

))

+ hn,

(3.7)

and one can achieve convergence and stability of the scheme (3.7) under some suitable
conditions.

(iii) Furthermore, some variational inequalities of the form (1.7), for example, Noor (gen-
eral) variational inequality introduced and studied by Noor (2007), can be solved via the new
approximation method of the form JFESD (1.1) or its special cases (3.2) and (3.7). However,
it follows from Remark 1.2, Figs. 4 and 5 in Example 3.1 and Table 1 of Example 3.2 that
the convergence and stable of our approximation methods presented in this paper are better
than those of the Noor (2007).

4 Conclusions

In this paper, we introduced a class of general semi-implicit approximations with errors and
proved that the general iterative approximations converge to common fixed points of three
different nonexpansive-type operators in Hilbert spaces. In addition, we studied stability of
the iterative approximations, obtained convergence and validated our iterative schemes based
on some numerical examples, which show that the new iterative methods presented in this
paper have better convergence rate and stability. Finally, to solve Stampacchia variational
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inequality (1.7), we applied the new iterative methods to approximate common fixed points
of nonexpansive-type operators and the projection operator associated with the inequality
(1.7).

However, the following two open questions are worthy of future research:

(1)Nonexpansive-type operators include various forms, does the general iteration scheme
JFESD (1.1) also converge to fixed points of generalized nonexpansive operators (Thakur
et al. 2016; Ali et al. 2020), asymptotically quasi-nonexpansive type operators (Chang
et al. 2003), totally quasi-D-asymptotically nonexpansive operator (Ni and Yao 2015),
and other nonexpansive operators?
(2) Many iteration schemes are composed of Picard and Mann iteration schemes, so
whether can all iteration schemes based on Picard and Mann iterations converge to fixed
points of nonexpansive-type operators? And how about are convergence and stability
when errors and semi-implicit rule are considered?
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