Skip to main content
Log in

Dimension walks on hyperspheres

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The seminal works by George Matheron provide the foundations of walks through dimensions for positive definite functions defined in Euclidean spaces. For a d-dimensional space and a class of positive definite functions therein, Matheron called montée and descente two operators that allow for obtaining new classes of positive definite functions in lower and higher dimensional spaces, respectively. The present work examines three different constructions to dimension walks for continuous positive definite functions on hyperspheres. First, we define montée and descente operators on the basis of the spectral representation of isotropic covariance functions on hyperspheres. The second approach provides walks through dimensions following Yadrenko’s construction of random fields on spheres. Under this approach, walks through unit dimensions are not permissible, while it is possible to walk under \(\pm 2\) dimensions from a covariance function that is valid on a d-dimensional sphere. The third construction relies on the integration of a given isotropic random field over latitudinal arcs. In each approach, we provide spectral representations of the montée and descente as well as illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Alegría A, Emery X, Lantuéjoul C (2020) The turning arcs: a computationally efficient algorithm to simulate isotropic vector-valued Gaussian random fields on the \(d\)-sphere. Stat Comput 30(5):1403–1418

    Article  MathSciNet  Google Scholar 

  • Askey R (1975) Orthogonal polynomials and special functions. In: Regional conference series in applied mathematics, vol 21. SIAM, Philadelphia

  • Beatson RK, zu Castell W (2016) One-step recurrences for stationary random fields on the sphere. SIGMA Symmetry Integr Geom Methods Appl 12:043

    MathSciNet  MATH  Google Scholar 

  • Beatson RK, zu Castell W (2017) Dimension hopping and families of strictly positive definite zonal basis functions on spheres. J Approx Theory 221:22–37

    Article  MathSciNet  Google Scholar 

  • Beatson RK, zu Castell W, Xu Y (2014) A Pólya criterion for (strict) positive-definiteness on the sphere. IMA J Numer Anal 34(2):550–568

    Article  MathSciNet  Google Scholar 

  • Bochner S (1941) Hilbert distances and positive definite functions. Ann Math 42(3):647–656

    Article  MathSciNet  Google Scholar 

  • Cambanis S, Keener R, Simons G (1983) On \(\alpha \)-symmetric multivariate distributions. J Multivar Anal 13(2):213–233

    Article  MathSciNet  Google Scholar 

  • Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Cohl HS, MacKenzie C, Volkmer H (2013) Generalizations of generating functions for hypergeometric orthogonal polynomials with definite integrals. J Math Anal Appl 407:211–225

    Article  MathSciNet  Google Scholar 

  • Daley DJ, Porcu E (2014) Dimension walks and Schoenberg spectral measures. Proc Am Math Soc 142(5):1813–1824

    Article  MathSciNet  Google Scholar 

  • De Micheli E, Viano GA (2013) The expansion in Gegenbauer polynomials: a simple method for the fast computation of the Gegenbauer coefficients. J Comput Phys 239:112–122

    Article  MathSciNet  Google Scholar 

  • Durand L, Fishbane PM, Simmons L (1976) Expansion formulas and addition theorems for Gegenbauer functions. J Math Phys 17:1933–1948

    Article  MathSciNet  Google Scholar 

  • Eaton ML (1981) On the projections of isotropic distributions. Ann Stat 9(2):391–400

    Article  MathSciNet  Google Scholar 

  • Emery X, Porcu E (2019) Simulating isotropic vector-valued Gaussian random fields on the sphere through finite harmonics approximations. Stoch Environ Res Risk Assess 33(8–9):1659–1667

    Article  Google Scholar 

  • Emery X, Porcu E, Bissiri P (2019) A semiparametric class of axially symmetric random fields on the sphere. Stoch Environ Res Risk Assess 33(10):1863–1874

    Article  Google Scholar 

  • Emery X, Arroyo D, Mery N (2022) Twenty-two families of multivariate covariance kernels on spheres, with their spectral representations and sufficient validity conditions. Stoch Environ Res Risk Assess 36(5):1447–1467

  • Erdélyi A (1954) Tables of integral transforms, vol II. McGraw-Hill, New York

    MATH  Google Scholar 

  • Fang KW (2018) Symmetric multivariate and related distributions. CRC Press, Boca Raton

    Book  Google Scholar 

  • Gegenbauer L (1884) Zur theorie der functionen \({C}_n^{\nu }(x)\). Denkschriften der Akademie der Wissenschaften in Wien, Math Naturwiss K1 48:293–316

  • Gel’fand I, Graev M, Vilenkin N (1966) Generalized functions, vol. 5: integral geometry and representation theory. Academic Press, New York

  • Gneiting T (2001) Criteria of Pólya type for radial positive definite functions. Proc Am Math Soc 129(8):2309–2318

    Article  Google Scholar 

  • Gneiting T (2002) Compactly supported correlation functions. J Multivar Anal 83(2):493–508

    Article  MathSciNet  Google Scholar 

  • Gradshteyn I, Ryzhik I (2007) Table of integrals, series, and products. Academic Press, Amsterdam

    MATH  Google Scholar 

  • Lantuéjoul C, Freulon X, Renard D (2019) Spectral simulation of isotropic Gaussian random fields on a sphere. Math Geosci 51(8):999–1020

    Article  MathSciNet  Google Scholar 

  • Magnus W, Oberhettinger F, Soni R (1966) Formulas and theorems for the special functions of mathematical physics. Springer, Berlin

    Book  Google Scholar 

  • Matheron G (1965) Les Variables Régionalisées et leur Estimation. Masson, Paris

    Google Scholar 

  • Matheron G (1971) The theory of regionalized variables and its applications. Paris School of Mines, Fontainebleau

    Google Scholar 

  • Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 5(3):439–468

    Article  MathSciNet  Google Scholar 

  • Olver FW, Lozier DM, Boisvert RF et al (2010) NIST handbook of mathematical functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Porcu E, Gregori P, Mateu J (2007) La descente et la montée étendues: the spatially \(d\)-anisotropic and the spatio-temporal case. Stoch Environ Res Risk Assess 21(6):683–693

    Article  MathSciNet  Google Scholar 

  • Santaló L (1976) Integral geometry and geometric probability. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Schaback R, Wu Z (1996) Operators on radial functions. J Comput Appl Math 73(1–2):257–270

    Article  MathSciNet  Google Scholar 

  • Schoenberg IJ (1938) Metric spaces and completely monotone functions. Ann Math 39(4):811–841

    Article  MathSciNet  Google Scholar 

  • Schoenberg IJ (1942) Positive definite functions on spheres. Duke Math J 9(1):96–108

    Article  MathSciNet  Google Scholar 

  • Trübner M, Ziegel J (2017) Derivatives of isotropic positive definite functions on spheres. Proc Am Math Soc 145(7):3017–3031

    Article  MathSciNet  Google Scholar 

  • Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396

    Article  MathSciNet  Google Scholar 

  • Whipple F (1925) A group of generalized hypergeometric series: relations between 120 allied series of the type \(f\left[a,b,c;e,f\right]\). Proc Lond Math Soc s2-23(1):104–114

  • Yadrenko MI (1983) Spectral theory of random fields. Springer, New York

    MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the funding of the National Agency for Research and Development of Chile, through grants ANID/FONDECYT/REGULAR/1210050 and ANID PIA AFB180004. The second author was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP, # 2021/04269-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Emery.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Communicated by Eduardo Souza de Cursi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emery, X., Peron, A.P. & Porcu, E. Dimension walks on hyperspheres. Comp. Appl. Math. 41, 199 (2022). https://doi.org/10.1007/s40314-022-01912-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01912-4

Keywords

Mathematics Subject Classification

Navigation