Skip to main content
Log in

Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper proposes the alternating direction implicit (ADI) numerical approaches for computing the solution of multi-dimensional distributed-order fractional integrodifferential problems. The proposed method discretizes the unknown solution in two stages. First, the Riemann–Liouville fractional integral term and the distributed-order time-fractional derivative are discretized with the help of the second-order convolution quadrature and the weighted and shifted Grünwald formula, respectively. Second, the spatial discretization is obtained by the general centered finite difference (FD) technique. At the same time, the ADI algorithms are devised for reducing the computational burden. Additionally, the convergence analysis of proposed ADI FD schemes is analyzed in detail through the energy method. Finally, two numerical examples highlight the accuracy of the proposed method and verify the theoretical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbaszadeh M, Dehghan M (2017) An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer Algorithms 75(1):173–211

    Article  MathSciNet  MATH  Google Scholar 

  • Abdelkawy M, Amin A, Lopes AM (2022) Fractional-order shifted legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations. Comput Appl Math 41(1):1–21

    Article  MathSciNet  MATH  Google Scholar 

  • Akram T, Abbas M, Ali A (2021) A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation. J Math Comput Sci 22(1):85–96

    Article  Google Scholar 

  • Alia A, Abbasb M, Akramc T (2021) New group iterative schemes for solving the two-dimensional anomalous fractional sub-diffusion equation. J Math Comput Sci 22(2):119–127

    Article  Google Scholar 

  • Atanackovic TM, Pilipovic S, Zorica D (2009) Time distributed-order diffusion-wave equation. i. volterra-type equation. Proc R Soc A: Math Phys Eng Sci 465(2009):1869–1891

  • Bagley RL, Torvik PJ (2000) On the existence of the order domain and the solution of distributed order equations—Part i. Int J Appl Math 2(2000):865–882

    MathSciNet  MATH  Google Scholar 

  • Behera S, Ray SS (2022) A wavelet-based novel technique for linear and nonlinear fractional Volterra–Fredholm integro-differential equations. Comput Appl Math 41(2):1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Caputo M (2001) Distributed order differential equations modelling dielectric induction and diffusion. Fract Calc Appl Anal 4:421–442

    MathSciNet  MATH  Google Scholar 

  • Chen H, Lü S, Chen W (2016) Finite difference/spectral approximations for the distributed order time fractional reaction–diffusion equation on an unbounded domain. J Comput Phys 315:84–97

    Article  MathSciNet  MATH  Google Scholar 

  • Chen H, Gan S, Xu D, Liu Q (2016) A second-order BDF compact difference scheme for fractional-order Volterra equation. Int J Comput Math 93(7):1140–1154

    Article  MathSciNet  MATH  Google Scholar 

  • Du R, Hao ZP, Sun Z (2016) Lubich second-order methods for distributed-order time-fractional differential equations with smooth solutions. East Asian J Appl Math 6(2):131–151

    Article  MathSciNet  MATH  Google Scholar 

  • Gao Gh, Sun Z (2016) Two alternating direction implicit difference schemes for solving the two-dimensional time distributed-order wave equations. J Sci Comput 69(2):506–531

    Article  MathSciNet  MATH  Google Scholar 

  • Gao G, Zz S (2016) Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J Sci Comput 66(3):1281–1312

    Article  MathSciNet  MATH  Google Scholar 

  • Gao G, Alikhanov AA, Zz S (2017) The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J Sci Comput 73(1):93–121

    Article  MathSciNet  MATH  Google Scholar 

  • Gao X, Liu F, Li H, Liu Y, Turner I, Yin B (2020) A novel finite element method for the distributed-order time fractional Cable equation in two dimensions. Comput Math Appl 80(5):923–939

    Article  MathSciNet  MATH  Google Scholar 

  • Hilfer R (2000) Applications of fractional calculus in physics. World Scientific

  • Huang Q, Qi Rj, Qiu W (2021) The efficient alternating direction implicit Galerkin method for the nonlocal diffusion-wave equation in three dimensions. J Appl Math Comput pp 1–21

  • Jian HY, Huang TZ, Gu XM, Zhao XL, Zhao YL (2021) Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations. Comput Math Appl 94:136–154

    Article  MathSciNet  MATH  Google Scholar 

  • Jin B, Lazarov R, Sheen D, Zhou Z (2016) Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Fract Calc Appl Anal 19(1):69–93

    Article  MathSciNet  MATH  Google Scholar 

  • Katsikadelis JT (2014) Numerical solution of distributed order fractional differential equations. J Comput Phys 259:11–22

    Article  MathSciNet  MATH  Google Scholar 

  • Kochubei AN (2008) Distributed order calculus and equations of ultraslow diffusion. J Math Anal Appl 340(1):252–281

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar S, Saha Ray S (2021) Numerical treatment for burgers-fisher and generalized Burgers–Fisher equations. Math Sci 15(1):21–28

    Article  MathSciNet  MATH  Google Scholar 

  • Li L, Xu D, Luo M (2013) Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation. J Comput Phys 255:471–485

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Du Y, Li H, He S, Gao W (2015) Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput Math Appl 70(4):573–591

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Du Y, Li H, Li J, He S (2015) A two-grid mixed finite element method for a nonlinear fourth-order reaction–diffusion problem with time-fractional derivative. Comput Math Appl 70(10):2474–2492

    Article  MathSciNet  MATH  Google Scholar 

  • Lopes AM, Machado JT (2021) Multidimensional scaling analysis of generalized mean discrete-time fractional order controllers. Commun Nonlinear Sci Numer Simul 95:105657

    Article  MathSciNet  MATH  Google Scholar 

  • Lopez-Marcos J (1990) A difference scheme for a nonlinear partial integrodifferential equation. SIAM J Numer Anal 27(1):20–31

    Article  MathSciNet  MATH  Google Scholar 

  • Lubich C (1988) Convolution quadrature and discretized operational calculus. I. Numer Math 52(2):129–145

  • Lubich C (1986) Discretized fractional calculus. SIAM J Math Anal 17(3):704–719

    Article  MathSciNet  MATH  Google Scholar 

  • Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection–dispersion flow equations. J Comput Appl Math 172(1):65–77

    Article  MathSciNet  MATH  Google Scholar 

  • Meerschaert MM, Nane E, Vellaisamy P (2011) Distributed-order fractional diffusions on bounded domains. J Math Anal Appl 379(1):216–228

    Article  MathSciNet  MATH  Google Scholar 

  • Moghaddam B, Dabiri A, Lopes AM, Machado J (2019) Numerical solution of mixed-type fractional functional differential equations using modified Lucas polynomials. Comput Appl Math 38(2):1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Morgado ML, Rebelo M (2015) Numerical approximation of distributed order reaction–diffusion equations. J Comput Appl Math 275:216–227

    Article  MathSciNet  MATH  Google Scholar 

  • Naber M (2004) Distributed order fractional sub-diffusion. Fractals 12(01):23–32

    Article  MathSciNet  MATH  Google Scholar 

  • Nakhushev AM (2003) Fractional calculus and its application, p 272

  • Nakhushev AM (1998) On the positivity of continuous and discrete differentiation and integration operators that are very important in fractional calculusand in the theory of equations of mixed type. Differ Uravn 34(1):101–109

    MathSciNet  Google Scholar 

  • Nikan O, Avazzadeh Z (2021) Numerical simulation of fractional evolution model arising in viscoelastic mechanics. Appl Numer Math 169:303–320

    Article  MathSciNet  MATH  Google Scholar 

  • Nikan O, Avazzadeh Z, Machado JT (2021) Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model. App Math Model 100:107–124

    Article  MathSciNet  MATH  Google Scholar 

  • Nikan O, Avazzadeh Z, Machado JT (2021) Numerical study of the nonlinear anomalous reaction-subdiffusion process arising in the electroanalytical chemistry. J Comput Sci 53:101394

    Article  Google Scholar 

  • Pani AK, Fairweather G, Fernandes RI (2010) Adi orthogonal spline collocation methods for parabolic partial integro-differential equations. IMA J Numer Anal 30(1):248–276

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, Elsevier, San Diego

    MATH  Google Scholar 

  • Pskhu AV (2004) On the theory of the continual integro-differentiation operator. Differ Equ 40:1

  • Pskhu AV (2005) Partial differential equations of fractional order. Nauka, Moscow

  • Qiao L, Qiu W, Xu D (2021) A second-order ADI difference scheme based on non-uniform meshes for the three-dimensional nonlocal evolution problem. Comput Math Appl 102:137–145

    Article  MathSciNet  MATH  Google Scholar 

  • Qiao L, Xu D, Qiu W (2022) The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space. Appl Numer Math 172:359–381

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu W, Chen H, Zheng X (2019) An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional burgers equations. Math Comput Simul 166:298–314

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu W, Xu D, Chen H, Guo J (2020) An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions. Comput Math Appl 80(12):3156–3172

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu W, Xu D, Guo J, Zhou J (2020) A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. Numer Algorithms 85(1):39–58

    Article  MathSciNet  MATH  Google Scholar 

  • Sun Z (2009) The method of order reduction and its application to the numerical solutions of partial differential equations. Science Press, Beijing

    Google Scholar 

  • Tarasov V (2021) From fractional differential equations with Hilfer derivatives. Comput Appl Math 40(8):1–17

    Article  Google Scholar 

  • Tarasov VE (2021) Integral equations of non-integer orders and discrete maps with memory. Mathematics 9(11):1177

    Article  Google Scholar 

  • Tian W, Zhou H, Deng W (2015) A class of second order difference approximations for solving space fractional diffusion equations. Math Comput 84(294):1703–1727

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Vong S (2014) Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J Comput Phys 277:1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Vong S (2014) A high-order exponential ADI scheme for two dimensional time fractional convection–diffusion equations. Comput Math Appl 68(3):185–196

    Article  MathSciNet  MATH  Google Scholar 

  • Xu D (1997) The global behavior of time discretization for an abstract Volterra equation in Hilbert space. Calcolo 34(1):71–104

    MathSciNet  MATH  Google Scholar 

  • Yang X, Zhang H, Xu D (2018) WSGD-OSC scheme for two-dimensional distributed order fractional reaction–diffusion equation. J Sci Comput 76(3):1502–1520

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Sun Z-Z, Wu H (2011) Error estimates of Crank–Nicolson-type difference schemes for the subdiffusion equation. SIAM J Numer Anal 49(6):2302–2322

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang H, Liu F, Jiang X, Turner I (2022) Spectral method for the two-dimensional time distributed-order diffusion-wave equation on a semi-infinite domain. J Comput Appl Math 399:113712

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to three anonymous referees and editors for their valuable comments and helpful suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Avazzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Vasily E. Tarasov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Nikan, O., Avazzadeh, Z. et al. Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems. Comp. Appl. Math. 41, 236 (2022). https://doi.org/10.1007/s40314-022-01934-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01934-y

Keywords

Mathematics Subject Classification

Navigation