Skip to main content
Log in

Numerical solution of fractional Kersten–Krasil’shchik coupled KdV–mKdV system arising in shallow water waves

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In the present article, a meshfree numerical scheme based on multiquadric radial basis function to solve the time-fractional Kersten–Krasil’shchik coupled KdV–mKdV system has been proposed. The finite difference scheme and the Kansa method, respectively, are used to discretize the temporal and spatial derivatives. The stability and convergence of the proposed numerical scheme are also theoretically established. Finally, numerical simulations are performed and compared with the exact solutions to establish the accuracy and applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Attia N, Akgül A, Seba D, Nour A (2021) Numerical solution of the fractional relaxation-oscillation equation by using reproducing kernel Hilbert space method. Int. J. Appl. Comput. Math. 7:165

    Article  MathSciNet  Google Scholar 

  • Baleanu D, Tenreiro Machado JA, Luo ACJ (eds) (2012) Fractional dynamics and control. Springer, New York

    Google Scholar 

  • Baskonus HM (2019) Complex surfaces to the fractional (2 + 1)-dimensional Boussinesq dynamical model with the local M-derivative. Eur Phys J Plus 134:322

    Article  Google Scholar 

  • Burkardt J, Wu Y, Zhang Y (2021) A unified meshfree pseudospectral method for solving both classical and fractional PDEs. SIAM J Sci Comput 43(2):A1389–A1411

    Article  MathSciNet  Google Scholar 

  • Ganji RM, Jafari H, Baleanu D (2020) A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel. Chaos Solitons Fract 130:109405

    Article  MathSciNet  Google Scholar 

  • Ganji RM, Jafari H, Kgarose M, Mohammadi A (2021) Numerical solutions of time-fractional Klein–Gordon equations by clique polynomials. Alex Eng J 60(5):4563–4571

    Article  Google Scholar 

  • Hon YC, Fan EG (2004) Solitary wave and doubly periodic wave solutions for the Kersten–Krasil’shchik coupled KdV–mKdV system. Chaos Solitons Fract 19(5):1141–1146

    Article  Google Scholar 

  • Jafari H, Khalique CM, Nazari M (2011) Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion-wave equations. Appl Math Lett 24(11):1799–1805

    Article  MathSciNet  Google Scholar 

  • Jafari H, Tajadodi H, Baleanu D (2014) Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations. J Comput Nonlinear Dynam 9(2):021019

    Article  Google Scholar 

  • Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19(8–9):147–161

    Article  MathSciNet  Google Scholar 

  • Kersten P, Krasil’shchik J (2000) Complete integrability of the coupled KdV–mKdV system. arXiv:nlin/0010041

  • Khan H, Alipour M, Jafari H, Khan RA (2016) Approximate analytical solution of a coupled system of fractional partial differential equations by Bernstein polynomials. Int J Appl Comput Math 2:85–96

    Article  MathSciNet  Google Scholar 

  • Kumar A, Bhardwaj A, Dubey S (2021) A local meshless method to approximate the time-fractional telegraph equation. Eng Comput 37:3473–3488

    Article  Google Scholar 

  • Kurt A, Tasbozan O, Baleanu D (2017) New solutions for conformable fractional Nizhnik–Novikov–Veselov system via \( G^{\prime }/G \) expansion method and homotopy analysis methods. Opt Quantum Electron 49:333

    Article  Google Scholar 

  • Nikan O, Jafari H, Golbabai A (2020) Numerical analysis of the fractional evolution model for heat flow in materials with memory. Alex Eng J 59(4):2627–2637

    Article  Google Scholar 

  • Rui W, Qi X (2016) Bilinear approach to quasi-periodic wave solutions of the Kersten–Krasil’shchik coupled KdV–mKdV system. Bound Value Probl 2016:130

    Article  MathSciNet  Google Scholar 

  • Sadeghi S, Jafari H, Nemati S (2020) Operational matrix for Atangana–Baleanu derivative based on Genocchi polynomials for solving FDEs. Chaos Solitons Fract 135:109736

    Article  MathSciNet  Google Scholar 

  • Sagar B, Saha Ray S (2021) Numerical and analytical investigation for solutions of fractional Oskolkov–Benjamin–Bona–Mahony–Burgers equation describing propagation of long surface waves. Int J Mod Phys B 35(32):2150326

    Article  Google Scholar 

  • Sagar B, Saha Ray S (2021) Numerical soliton solutions of fractional Newell–Whitehead–Segel equation in binary fluid mixtures. Comput Appl Math 40(8):290

    Article  MathSciNet  Google Scholar 

  • Saha Ray S (2016) New exact solutions of fractional Davey-Stewartson equation with power-law nonlinearity and new integrable Davey–Stewartson-type equation. Eur Phys J Plus 131:327

    Article  Google Scholar 

  • Saha Ray S (2020) Nonlinear differential equations in physics. Springer, Singapore

    Book  Google Scholar 

  • Shah NA, Seikh AH, Chung JD (2021) The analysis of fractional-order Kersten–Krasil Shchik coupled KdV system, via a new integral transform. Symmetry 13(9):1592

    Article  Google Scholar 

  • Singh S, Saha Ray S (2017) Exact solutions for the Wick-type stochastic Kersten–Krasil’shchik coupled KdV–mKdV equations. Eur Phys J Plus 132:480

    Article  Google Scholar 

  • Sun Z, Wu X (2006) A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math 56(2):193–209

    Article  MathSciNet  Google Scholar 

  • Syam MI, Anwar M-NY, Yildirim A, Syam MM (2019) The modified fractional power series method for solving fractional non-isothermal reaction–diffusion model equations in a spherical catalyst. Int. J. Appl. Comput. Math. 5:38

    Article  MathSciNet  Google Scholar 

  • Tuan NH, Ganji RM, Jafari H (2020) A numerical study of fractional rheological models and fractional Newell–Whitehead–Segel equation with non-local and non-singular kernel. Chin J Phys 68:308–320

    Article  MathSciNet  Google Scholar 

  • Yi Q, Yi-Tian G, Xin Y, Gao-Qing M (2012) Bell polynomial approach and \( N \)-soliton solutions for a coupled KdV–mKdV System. Commun Theor Phys 58(1):73–78

    Article  MathSciNet  Google Scholar 

  • Zafar A, Ali KK, Raheel M, Nisar KS, Bekir A (2022) Abundant M-fractional optical solitons to the pertubed Gerdjikov–Ivanov equation treating the mathematical nonlinear optics. Opt Quant Electron 54:25

    Article  Google Scholar 

  • Zou W, Tang Y, Hosseini VR (2022) The numerical meshless approach for solving the 2-D time nonlinear multi-term fractional cable equation in complex geometries. Fractals 30(5):2240170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saha Ray.

Additional information

Communicated by Vasily E. Tarasov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, B., Saha Ray, S. Numerical solution of fractional Kersten–Krasil’shchik coupled KdV–mKdV system arising in shallow water waves. Comp. Appl. Math. 41, 286 (2022). https://doi.org/10.1007/s40314-022-01989-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01989-x

Keywords

Mathematics Subject Classification

Navigation