Skip to main content
Log in

Superconvergence analysis of a two-grid finite element method for nonlinear time-fractional diffusion equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Based on spatial finite-element methods combined with classical L1 time stepping method, the superconvergence analysis of the two-grid approximate scheme for the two-dimensional nonlinear time-fractional diffusion equations is considered. First, we use the rectangular Lagrange type finite element of order p to get a two-grid fully discrete scheme of the equation and discuss the superclose error estimate with the order \(O\left( h^{p+1}+H^{2p+2}+\tau ^{2-\alpha }\right) \) in the \(H^{1}\) norm, here \(\tau \), H and h denote time step, coarse and fine grid sizes, respectively. Second, through the interpolated postprocessing approach, the global superconvergence of order \(O\left( h^{2}+H^{4}+\tau ^{2-\alpha }\right) \) in the \(H^{1}\) norm is obtained. Finally, two numerical experiments are provided to confirm our theoretical results and effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Benson DA, Wheatcraft SW, Meerchaert MM (2000) Application of a fractional advection–dispersion equation. Water Resour Res 36:1403–1412

    Google Scholar 

  • Chen Y (2008) Superconvergence of mixed finite element methods for optimal control problems. Math Comput 77(263):1269–1291

    MathSciNet  MATH  Google Scholar 

  • Chen L, Chen Y (2011) Two-grid method for nonlinear reaction–diffusion equations by mixed finite element methods. J Sci Comput 49:383–401

    MathSciNet  MATH  Google Scholar 

  • Chen C, Huang Y (1995) High accuracy theory of finite element methods. Hunan Science Press, Changsha (in Chinese)

    Google Scholar 

  • Chen Y, Huang Y, Yu D (2003) A two-grid method for expanded mixed finite-element solution of semilinear reaction–diffusion equations. Int J Numer Methods Eng 57:193–209

    MathSciNet  MATH  Google Scholar 

  • Chen Y, Chen L, Zhang X (2013) Two-grid method for nonlinear parabolic equations by expanded mixed finite element methods. Numer Methods Partial Differ Equ 29(4):1238–1256

    MathSciNet  MATH  Google Scholar 

  • Ciarlet P (1978) The finite element method for elliptic problems. North-Holland, New York

    MATH  Google Scholar 

  • Das S (2008) Functional fractional calculus for system identification and controls. Springer, New York

    MATH  Google Scholar 

  • Duncan T, Hu Y, Pasik-Duncan B (2000) Stochastic calculus for fractional Brownian motion. Theory I. IEEE Conf Decis Control 38:212–216

    MathSciNet  MATH  Google Scholar 

  • Gao G, Sun Z (2011) A high-order compact finite difference scheme for the fractional sub-diffusion equation. J Comput Phys 230(3):586–595

    MathSciNet  MATH  Google Scholar 

  • Hilfer R (2000) Applications of fractional calculus in physics. Word Scientific, Singapore

    MATH  Google Scholar 

  • Huang Y, Li J, Lin Q (2012) Superconvergence analysis for time-dependent Maxwell’s equations in metamaterials. Numer Methods Partial Differ Equ 28:1794–1816

    MathSciNet  MATH  Google Scholar 

  • Jiang Y, Ma J (2011) High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math 235:3285–3290

    MathSciNet  MATH  Google Scholar 

  • Jin BT, Lazarov R, Pasciak J, Zhou Z (2015) Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J Numer Anal 35(2):561–582

    MathSciNet  MATH  Google Scholar 

  • Jin BT, Lazarov R, Zhou Z (2016) An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J Numer Anal 36(1):197–221

    MathSciNet  MATH  Google Scholar 

  • Jin B, Li B, Zhou Z (2018) Numerical analysis of nonlinear subdiffusion equations. SIAM J Numer Anal 56(1):1–23

    MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Li D, Liao H, Sun W et al (2018) Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun Comput Phys 24:86–103

    MathSciNet  MATH  Google Scholar 

  • Li Q, Chen Y, Huang Y, Wang Y (2020) Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method. Appl Numer Math 157:38–54

    MathSciNet  MATH  Google Scholar 

  • Li Q, Chen Y, Huang Y, Wang Y (2021) Two-grid methods for nonlinear time fractional diffusion equations by L1-Galerkin FEM. Math Comput Simul 185:436–451

    MathSciNet  MATH  Google Scholar 

  • Lin Q, Lin J (2006) Finte element methods: accuracy and improvement. Science Press, Beijing

    Google Scholar 

  • Lin Y, Xu C (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225(2):1533–1552

    MathSciNet  MATH  Google Scholar 

  • Liu Q, Shi DY (2020) Superconvergence analysis of a two-grid method for an energy-stable Ciarlet–Raviart type scheme of Cahn–Hilliard equation. Numer Algorithms 85(2):607–622

    MathSciNet  MATH  Google Scholar 

  • Liu Y, Du Y, Li H, Li J, He S (2015) A two-grid mixed finite element method for a nonlinear fourth-order reaction–diffusion problem with time-fractional derivative. Comput Math Appl 70:2474–2492

    MathSciNet  MATH  Google Scholar 

  • Liu Y, Du Y, Li H, Wang J (2016) A two-grid finite element approximation for a nonlinear time-fractional Cable equation. Nonlinear Dyn 85:2535–2548

    MathSciNet  MATH  Google Scholar 

  • Magin RL (2006) Fractional calculus in bioengineering. Begell House Publishers, Danbury

    Google Scholar 

  • Marion M, Xu J (1995) Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J Numer Anal 32(4):1170–1184

    MathSciNet  MATH  Google Scholar 

  • Mclean W, Mustapha K (2009) Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer Algorithms 52(1):69–88

    MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations, mathematics in science and engineering. Academic Press Inc., San Diego

    MATH  Google Scholar 

  • Qiu HL (2018) Two-grid stabilized methods for the stationary incompressible Navier–Stokes equations with nonlinear slip boundary conditions. Appl Math Comput 332:172–188

    MathSciNet  MATH  Google Scholar 

  • Ren J, Huang C, An N (2019) Direct discontinuous Galerkin method for solving nonlinear time fractional diffusion equation with weak singularity solution. Appl Math Lett. https://doi.org/10.1016/j.aml.2019.106111

    Article  MATH  Google Scholar 

  • Scalas E, Gorenflo R, Mainardi F (2000) Fractional calculus and continuous-time finance. Phys A 284:376–384

    MathSciNet  Google Scholar 

  • Shi DY, Liu Q (2020) Unconditional superconvergence analysis of a two-grid finite element method for nonlinear wave equations. Appl Math Comput 150:38–50

    MathSciNet  MATH  Google Scholar 

  • Shi DY, Yang HJ (2020) Superconvergence analysis of a two grid finite element method for Ginzburg–Landau equation. Appl Math Comput 365:124691

    MathSciNet  MATH  Google Scholar 

  • Shi ZG, Zhao YM, Liu FW (2017) Superconvergence analysis of an \(H^{1}\)-Galerkin mixed finite element method for two-dimensional multi-term time fractional diffusion equations. Comput Math Appl 74:1903–1914

    MathSciNet  MATH  Google Scholar 

  • Shi DY, Mu PC, Yang HJ (2018) Superconvergence analysis of a two-grid method for semilinear parabolic equations. Appl Math Lett 84:34–41

    MathSciNet  MATH  Google Scholar 

  • Stynes M, O’Riordan E, Gracia JL (2017) Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation. SIAM J Numer Anal 55:1057–1079

    MathSciNet  MATH  Google Scholar 

  • Sun Z, Wu X (2006) A fully discrete scheme for a diffusion wave system. Appl Numer Math 56:193–209

    MathSciNet  MATH  Google Scholar 

  • Wang J, Huang Y, Tian Z et al (2016) Superconvergence analysis of finite element method for the time-dependent Schrodinger equation. Comput Math Appl 71:1960–1972

    MathSciNet  MATH  Google Scholar 

  • Xu J (1994) A novel two-grid method for semilinear elliptic equations. SIAM J Sci Comput 15:231–237

    MathSciNet  MATH  Google Scholar 

  • Xu J (1996) Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J Numer Anal 33:1759–1777

    MathSciNet  MATH  Google Scholar 

  • Yan N (2008) Superconvergence analysis and a posteriori error estimation in finite element methods. Science Press, Beijing

    Google Scholar 

  • Yang Y, Zeng F (2019) Numerical analysis of linear and nonlinear time-fractional subdiffusion equations. Commun Appl Math Comput 1:621–637

    MathSciNet  MATH  Google Scholar 

  • Yu H, Wu B, Zhang D (2019) The Laguerre–Hermite spectral methods for the time-fractional sub-diffusion equations on unbounded domains. Numer Algorithms. https://doi.org/10.1007/s11075-018-00652-z

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang H, Yang X (2019) Superconvergence analysis of nonconforming finite element method for time-fractional nonlinear parabolic equations on anisotropic meshes. Comput Math Appl 77(10):2707–2724

    MathSciNet  MATH  Google Scholar 

  • Zhou BY, Chen XL, Li DF (2020) Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations. J Sci Comput 2:85–89

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

Communicated by Frederic Valentin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the State Key Program of National Natural Science Foundation of China (11931003) and National Natural Science Foundation of China (41974133, 11971410, 11671157), Project for Hunan National Applied Mathematics Center of Hunan Provincial Science and Technology Department (2020ZYT003), Hunan Provincial Innovation Foundation for Postgraduate, China (XDCX2021B098), Postgraduate Scientific Research Innovation Project of Hunan Province (CX20210597)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Q., Chen, Y. & Huang, Y. Superconvergence analysis of a two-grid finite element method for nonlinear time-fractional diffusion equations. Comp. Appl. Math. 41, 361 (2022). https://doi.org/10.1007/s40314-022-02070-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02070-3

Keywords

Navigation