Skip to main content
Log in

Extragradient method with Bregman distances for solving vector quasi-equilibrium problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We study the extragradient method for solving vector quasi-equilibrium problems in Banach spaces, which generalizes the extragradient method for vector equilibrium problems and scalar quasi-equilibrium problems. We propose a regularization procedure which ensures the strong convergence of the generated sequence to a solution of the vector quasi-equilibrium problem under standard assumptions on the problem without assuming neither any monotonicity assumption on the vector valued bifunction nor any weak continuity assumption of f in its arguments that in the many well-known methods have been used. Also, we show that the boundedness of the generated sequences implies that the solution set of the vector quasi-equilibrium problem is nonempty, and prove the strong convergence of the generated sequences to a solution of the problem. Finally, we give some examples of vector quasi-equilibrium problems to which our main theorem can be applied. We also present some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alber YI (1996) Metric and generalized projection operators in Banach spaces: properties and applications. In: Theory and applications of nonlinear operators of accretive and monotone type. Lecture notes in pure and applied mathematics, vol 178. Marcel Dekker, New York, pp 15–50

  • Armijo L (1966) Minimization of functions having continuous partial derivatives. Pac J Math 16:1–3

    Article  MathSciNet  MATH  Google Scholar 

  • Aussel D, Cotrina J, Iusem AN (2017) An existence result for qussi-equilibrium problems. J Convex Anal 24:55–66

    MathSciNet  MATH  Google Scholar 

  • Bianchi M, Schaible S (1996) Generalized monotone bifunctions and equilibrium problems. J Optim Theory Appl 90:31–43

    Article  MathSciNet  MATH  Google Scholar 

  • Bolintinéanu S (2000) Approximate efficiency and scalar stationarity in unbounded nonsmooth convex vector optimization problems. J Optim Theory Appl 106:265–296

    Article  MathSciNet  MATH  Google Scholar 

  • Bolintinéanu S (2001) Vector variational principles; \(\epsilon \)-efficiency and scalar stationarity. J Convex Anal 8:71–85

    MathSciNet  MATH  Google Scholar 

  • Bonnel H, Iusem AN, Svaiter BF (2005) Proximal methods in vector optimization. SIAM J Optim 15:953–970

    Article  MathSciNet  MATH  Google Scholar 

  • Butnariu D, Iusem AN (2000) Totally convex functions for fixed point computation and infinite dimensional optimization. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Butnariu D, Iusem AN, Resmerita E (2000) Total convexity for powers of the norm in uniformly convex Banach spaces. J Convex Anal 7:319–334

    MathSciNet  MATH  Google Scholar 

  • Chadli O, Chbani Z, Riahi H (2000) Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J Optim Theory Appl 105:299–323

    Article  MathSciNet  MATH  Google Scholar 

  • Charles Chidume (2009) Geometric properties of Banach spaces and nonlinear iterations. Lecture notes in mathematics, vol 1965. Springer, London

    Google Scholar 

  • Combettes PL, Hirstoaga SA (2005) Equilibrium programming in Hilbert spaces. J Nonlinear Convex Anal 6:117–136

    MathSciNet  MATH  Google Scholar 

  • Djafari Rouhani B, Mohebbi V (2022) Extragradient methods for quasi-equilibrium problems in Banach spaces. J Aust Math Soc 112:90–114

    Article  MathSciNet  MATH  Google Scholar 

  • Djafari Rouhani B, Mohebbi V (2020) Proximal point method for quasi-equilibrium problems in Banach spaces. Numer Funct Anal Optim 41:1007–1026

    Article  MathSciNet  MATH  Google Scholar 

  • Golshtein EG, Tretyakov NV (1996) Modified Lagrangians and monotone maps in optimization. Wiley, New York

    MATH  Google Scholar 

  • Gasiński L, Papageorgiou NS (2006) Nonlinear analysis. Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca RatonI (ISBN: 978-1-58488-484-2; 1-58488-484-3)

  • Gong X (2006) Strong vector equilibrium problems. J Glob Optim 36:339–349

    Article  MathSciNet  MATH  Google Scholar 

  • Iusem AN, Gárciga Otero R (2001) Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces. Numer Funct Anal Optim 22:609–640

    Article  MathSciNet  MATH  Google Scholar 

  • Iusem AN, Kassay G, Sosa W (2009) On certain conditions for the existence of solutions of equilibrium problems. Math Program 116:259–273

    Article  MathSciNet  MATH  Google Scholar 

  • Iusem AN, Mohebbi V (2020) Extragradient methods for nonsmooth equilibrium problems in Banach spaces. Optimization 69:2383–2403

    Article  MathSciNet  MATH  Google Scholar 

  • Iusem AN, Mohebbi V (2019) Extragradient methods for vector equilibrium problems in Banach spaces. Numer Funct Anal Optim 40:993–1022

    Article  MathSciNet  MATH  Google Scholar 

  • Iusem AN, Nasri M (2007) Inexact proximal point methods for equilibrium problems in Banach spaces. Numer Funct Anal Optim 28(11–12):1279–1308

    Article  MathSciNet  MATH  Google Scholar 

  • Iusem AN, Nasri M (2011) Korpolevich’s method for variational inequality problems in Banach spaces. J Glob Optim 50:59–76

    Article  MATH  Google Scholar 

  • Iusem AN, Sosa W (2010) On the proximal point method for equilibrium problems in Hilbert spaces. Optimization 59:1259–1274

    Article  MathSciNet  MATH  Google Scholar 

  • Iusem AN, Svaiter BF (1997) A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42:309–321

    Article  MathSciNet  MATH  Google Scholar 

  • Kamimura S, Takahashi W (2002) Strong convergence of a proximal-type algorithm in a Banach space. SIAM J Optim 13:938–945

    Article  MathSciNet  MATH  Google Scholar 

  • Kassay G, Miholca M, Vinh NT (2016) Vector quasi-equilibrium problems for the sum of two multivalued mappings. J Optim Theory Appl 169:424–442

    Article  MathSciNet  MATH  Google Scholar 

  • Khatibzadeh H, Mohebbi V (2019) Approximating solutions of equilibrium problems in Hadamard spaces. Miskolc Math Notes 20:281–297

    Article  MathSciNet  MATH  Google Scholar 

  • Khatibzadeh H, Mohebbi V (2021) Monotone and pseudo-monotone equilibrium problems in Hadamard Spaces. J Aust Math Soc 110:220–242

    Article  MathSciNet  MATH  Google Scholar 

  • Khatibzadeh H, Mohebbi V (2016) Proximal point algorithm for infinite pseudo-monotone bifunctions. Optimization 65:1629–1639

    Article  MathSciNet  MATH  Google Scholar 

  • Khobotov EN (1987) Modifications of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput Math Math Phys 27:120–127

    Article  MathSciNet  MATH  Google Scholar 

  • Konnov IV (1993) Combined relaxation methods for finding equilibrium points and solving related problems. Russ Math 37:34–51

    MATH  Google Scholar 

  • Korpelevich GM (1976) The extragradient method for finding saddle points and other problems (Russian). Ekonom i Mat Metody 12:747–756

    MathSciNet  MATH  Google Scholar 

  • Marcotte P (1991) Application of Khobotov’s algorithm to variational inequalities and network equilibrium problems. INFOR Inf Syst Oper Res 29:258–270

    MATH  Google Scholar 

  • Phelps RR (1997) Lectures on maximal monotone operators. Extracta Math 12:193–230

    MathSciNet  MATH  Google Scholar 

  • Reich S (1996) A weak convergence theorem for the alternating method with Bregman distances In: Theory and applications of nonlinear operators of accretive and monotone type. Lecture notes in pure and applied mathematics, vol 178. Marcel Dekker, New York, pp 313–318

  • Van NTT, Strodiot JJ, Nguyen VH, Vuong PT (2018) An extragradient-type method for solving nonmonotone quasi-equilibrium problems. Optimization 67:651–664

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Mohebbi.

Additional information

Communicated by Orizon Pereira Ferreira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, V. Extragradient method with Bregman distances for solving vector quasi-equilibrium problems. Comp. Appl. Math. 41, 376 (2022). https://doi.org/10.1007/s40314-022-02086-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02086-9

Keywords

Mathematics Subject Classification

Navigation