Skip to main content
Log in

On the existence of approximate solutions to fuzzy delay differential equations under the metric derivative

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we use a metric derivative which is based on the Hausdorff distance between fuzzy numbers. Using this concept of differentiability, we study fuzzy delay differential equations and also prove a result which guarantees the existence of the approximate solutions. The proof of this result is constructive and provides a method to obtain approximate solutions based on fuzzy arithmetic. In order to illustrate the applicability of the presented results, we provide an example with Hutchinson equation and other with a two-dimensional system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu Arqub O, Singh J, Alhodaly M (2021) Adaptation of kernel functions-based approach with Atangana-Baleanu-Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integro differential equations. Math Method Appl Sci. https://doi.org/10.1002/mma.7228

    Article  Google Scholar 

  • Alqudah MA, Ashraf R, Rashid S, Singh J, Hammouch Z, Abdeljawad T (2021) Novel numerical investigations of fuzzy Cauchy reaction-diffusion models via generalized fuzzy fractional derivative operators. Fractal Fract 5:151. https://doi.org/10.3390/fractalfract5040151

    Article  Google Scholar 

  • Balasubramaniam P, Muralisankar S (2001) Existence and uniqueness of a fuzzy solution for nonlinear neutral functional differential equations. Comput Math Appl 42:961–967

    Article  MathSciNet  MATH  Google Scholar 

  • Bede B (2012) Mathematics of Fuzzy Sets and Fuzzy Logic. Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg

    Google Scholar 

  • Bencsik A, Bede B, Tar JK, Fodor J (2006) Fuzzy differential equations in modelling hydraulic differential servo cylinders, Third Romanian-Hungarian joint symposium on applied computational intelligence (SACI). Timisoara, Romania

    Google Scholar 

  • Bhaskar TG, Lakshmikantham V, Devi V (2004) Revisiting fuzzy differential equations. Nonlinear Anal Theory Methods Appl 58:351–358

    Article  MathSciNet  MATH  Google Scholar 

  • Biswas S, Roy TK (2018) Generalization of Seikkala derivative and differential transform method for fuzzy Volterra integro-differential equations. J Intell Fuzzy Syst 34:2795–2806. https://doi.org/10.3233/JIFS-17958

    Article  Google Scholar 

  • Biswas S, Roy TK (2019) A semianalytical method for fuzzy integro-differential equations under generalized seikkala derivative. Soft Comput 23:7959–7975. https://doi.org/10.1007/s00500-018-3430-4

    Article  MATH  Google Scholar 

  • Biswas S, Moi S, Sarkar SP (2021) Numerical solution of fuzzy Fredholm integro-differential equations by polynomial collocation method. Comput Appl Math 40:1–33

    Article  MathSciNet  MATH  Google Scholar 

  • Biswas S, Moi S, Pal S (2022) Study of interval type-2 fuzzy singular integro-differential equation by using collocation method in weighted space. New Math Nat Comput 18:113–145. https://doi.org/10.1142/S1793005722500077

    Article  Google Scholar 

  • Buckley JJ, Feuring T (2000) Fuzzy differential equations. Fuzzy Sets Syst 110:43–54

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano Y, Román-Flores H (2009) Comparation between some approaches to solve fuzzy differential equations. Fuzzy Sets Syst 160:1517–1527

    Article  MATH  Google Scholar 

  • Chalco-Cano Y, Rodríguez-López R, Jiménez-Gamero MD (2016) Characterizations of generalized differentiable fuzzy functions. Fuzzy Sets Syst 295:37–56

    Article  MathSciNet  MATH  Google Scholar 

  • De Gaetano A, Arino O (2000) Mathematical modelling of the intravenous glucose tolerance test. J Math Biol 40:136–168

    Article  MathSciNet  MATH  Google Scholar 

  • Diamond P, Kloeden P (1994) Metric Spaces of Fuzzy Sets. World Scientific, Singapore

    MATH  Google Scholar 

  • Guo M, Li R (2003) Impulsive functional differential inclusions and fuzzy population models. Fuzzy Sets Syst 138:601–615

    Article  MathSciNet  MATH  Google Scholar 

  • Guo M, Xue X, Li R (2003) The oscillation of delay differential inclusions and fuzzy biodynamics models. Math Comput Model 37:651–658

    Article  MathSciNet  MATH  Google Scholar 

  • Guo M, Peng X, Xu Y (2012) Oscillation property for fuzzy delay differential equations. Fuzzy Sets Syst 200:25–35

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK (1997) Analytic Theory of Differential Equations. Springer, New York

    Google Scholar 

  • Hukuhara M (1967) Intégration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10:205–223

    MathSciNet  MATH  Google Scholar 

  • Hüllermeier E (1997) An approach to modelling and simulation of uncertain dynamical systems. Int J Uncertain Fuzz Knowl Based Syst 5:117–137

    Article  MathSciNet  MATH  Google Scholar 

  • Hutchinson GE (1987) Introduction to population ecology. Yale University Press, UK

    MATH  Google Scholar 

  • Kaleva O (1987) Fuzzy differential equations. Fuzzy Sets Syst 24:301–317

    Article  MathSciNet  MATH  Google Scholar 

  • Kelley JI (1955) General Topology. Springer, New York

    MATH  Google Scholar 

  • Khastan A, Nieto JJ, Rodríguez-López R (2014) Fuzzy delay differential equations under generalized differentiability. Inf Sci 275:145–167

    Article  MathSciNet  MATH  Google Scholar 

  • Khastan A, Rodríguez-López R, Shahidi M,(2021) New metric-based derivatives for fuzzy functions and properties, Fuzzy Sets Syst

  • Kuang Y (1993) Delay Differential Equations: with Applications in Population Dynamics. Academic Press, Boston

    MATH  Google Scholar 

  • Lakshmikantham V, Nieto JJ (2003) Differential equations in metric spaces: an introduction and an application to fuzzy differential equations. Dyn Contin Discrete Impuls Syst A: Math Anal 10:991–1000

    MathSciNet  MATH  Google Scholar 

  • Lakshmikantham V, Mitchell AR, Mitchell RW (1975) On the existence of solutions of differential equations of retarded type in a Banach space, University of Texas at Arlington,

  • Lupulescu V (2009) On a class of fuzzy functional differential equations. Fuzzy Sets Syst 160:1547–1562

    Article  MathSciNet  MATH  Google Scholar 

  • Lupulescu V, Abbas U (2012) Fuzzy delay differential equations. Fuzzy Optim Decis Mak 11:99–111

    Article  MathSciNet  MATH  Google Scholar 

  • Lupulescu V, O’Regan D (2021) A new derivative concept for set-valued and fuzzy-valued functions. Differential and integral calculus in quasilinear metric spaces, Fuzzy Sets Syst 404:75–110

    MATH  Google Scholar 

  • Malinowski MT (2012) Itô type stochastic fuzzy differential equations with delay. Syst Cont Lett 61:692–701

    Article  MATH  Google Scholar 

  • Matloka M (1987) Fuzzy mappings-sequences and series, Institue of Economical Cybernetics. Department of Mathematics 146/150, 60-967, Poland

  • Moi S, Biswas S, Sarkar SP (2022) Finite-difference method for fuzzy singular integro-differential equation deriving from fuzzy non-linear differential equation. Granul Comput. https://doi.org/10.1007/s41066-022-00337-y

    Article  Google Scholar 

  • Moi S, Biswas S, Sarkar SP (2022b) A New Collocation Method for Fuzzy Singular Integro-Differential Equations. Int J Appl Comput Math 8:1–33. https://doi.org/10.1007/s40819-022-01263-y

    Article  MathSciNet  Google Scholar 

  • Nieto JJ, Rodríguez-López R (2006) Bounded solutions for fuzzy differential and integral equations. Chaos Soliton Fract 27:1376–1386

    Article  MathSciNet  MATH  Google Scholar 

  • Nieto JJ, Rodríguez-López R (2007) Euler polygonal method for metric dynamical systems. Inf Sci 177:4256–4270

    Article  MathSciNet  MATH  Google Scholar 

  • Nieto JJ, Rodríguez-López R (2014) Cauchy-Peano theorem for metric dynamical systems. Inf Sci 275:267–283

    Article  MathSciNet  MATH  Google Scholar 

  • Oberguggenberger M, Pittschmann S (1999) Differential equations with fuzzy parameters. Math Comput Model Dyn Syst 5:181–202

    Article  MATH  Google Scholar 

  • Panasyuk AI (1985) Quasidifferential equations in metric spaces. Differenet Eqs 21:914–921

    MathSciNet  MATH  Google Scholar 

  • Pandey P, Singh J (2022) An efficient computational approach for nonlinear variable order fuzzy fractional partial differential equations. Comput Appl Math 41:1–21

    Article  MathSciNet  MATH  Google Scholar 

  • Park JY, Lee SY, Jeong JU (2000) The approximate solutions of fuzzy functional integral equations. Fuzzy Sets Syst 110:79–90

    Article  MathSciNet  MATH  Google Scholar 

  • Park JY, Jung IH, Lee MJ (2001) Almost periodic solutions of fuzzy systems. Fuzzy Sets Syst 119:367–373

    Article  MathSciNet  MATH  Google Scholar 

  • Puri ML, Ralescu DA (1983) Differentials of fuzzy functions. J Math Anal Appl 91:552–558

    Article  MathSciNet  MATH  Google Scholar 

  • Seikkala S (1987) On the fuzzy initial value problem. Fuzzy Sets Syst 24:319–330

    Article  MathSciNet  MATH  Google Scholar 

  • Shahidi M, Khastan A (2020) Linear fuzzy Volterra integral equations on time scales. Comput Appl Math 39:1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Vorobiev D, Seikkala S (2002) Towards the theory of fuzzy differential equations. Fuzzy Sets Syst 125:231–237

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referees for their valuable suggestions. This article was partially supported by Fapesp under grants no. 2022/00196-1 and 2020/09838-0 and by CNPq under grant no. 313313/2020-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahidi.

Additional information

Communicated by Leonardo Tomazeli Duarte.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahidi, M., Esmi, E. On the existence of approximate solutions to fuzzy delay differential equations under the metric derivative. Comp. Appl. Math. 41, 412 (2022). https://doi.org/10.1007/s40314-022-02132-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02132-6

Keywords

Mathematics Subject Classification

Navigation