Skip to main content
Log in

A novel low-light enhancement via fractional-order and low-rank regularized retinex model

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Most of existing low-light image enhancement approaches either fail to consider fine parts of the image or fail to consider intensive noise. To overcome these drawbacks, this paper proposes a new model called the fractional-order and low-rank regularized retinex model. Our model injects low-rank and fractional-order prior into a retinex decomposition process to suppress noise in the reflectance map and preserve the fine parts of the image. Our method estimates piece-wise smoothed illumination and noise-suppressed reflectance in turn, avoiding the residual noise in illumination and reflection maps that is usually present in alternative decomposition methods. After getting the estimated reflectance and illumination, we adjust the illumination layer to generate the enhancement result. Experiments on some challenging low-light images are presented to reveal the effect of our model and show its superiority over several state-of-the-arts in terms of enhancement efficiency and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdullah M, Kabir M, Dewan M, Chae O (2007) A dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron 2(53):293–600

    Google Scholar 

  • Cai J, Cands E, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 4(20):1956–1982

    Article  MathSciNet  MATH  Google Scholar 

  • Cai B, Xu X, Guo K, Jia K, Hu B, Tao D (2017) A joint intrinsic–extrinsic prior model for retinex. In: Proceedings of IEEE international conference computer vision (ICCV). pp 4020–4029. Venice, Italy. https://doi.org/10.1109/ICCV.2017.431

  • Cheng H, Shi X (2004) A simple and effective histogram equalization approach to image enhancement. Digit Signal Process 2(14):158–170

    Article  Google Scholar 

  • Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 8(16):2080–2095

    Article  MathSciNet  Google Scholar 

  • Dong W, Shi G, Li X (2013) Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans Image Process 2(22):700–711

    Article  MathSciNet  MATH  Google Scholar 

  • Fu X, Sun Y, Li M et al (2014) A novel retinex based approach for image enhancement with illumination adjustment. IEEE Int Conf Acoust Speech Signal Process. https://doi.org/10.1109/ICASSP.2014.6853785

    Article  Google Scholar 

  • Fu X, Zeng D, Huang Y et al (2016) A fusion-based enhancing method for weakly illuminated images. Signal Process 129:82–96. https://doi.org/10.1016/j.sigpro.2016.05.031

    Article  Google Scholar 

  • Fu X, Zeng D, Huang Y, Zhang X, Ding X (2016b) A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of IEEE conference computer vision pattern recognit (CVPR). pp 2782–2790. Las Vegas, NY, USA. https://doi.org/10.1109/CVPR.2016.304

  • Gu K, Zhai G, Lin W, Yang X, Zhang W (2015) No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans Image Process 10(24):3218–3231

    MathSciNet  MATH  Google Scholar 

  • Gu K et al (2016) Blind quality assessment of tone-mapped images via analysis of information, naturalness, and structure. IEEE Trans Multimed 3(18):432–443

    Article  Google Scholar 

  • Gu K, Lin W, Zhai G et al (2017) No-reference quality metric of contrast-distorted images based on information maximization. IEEE Trans Cybern 12(47):4559–4565

    Article  Google Scholar 

  • Guo X, Li Y, Ling H (2017) LIME: low-light image enhancement via illumination map estimation. IEEE Trans Image Process 2(26):982–993

    Article  MathSciNet  MATH  Google Scholar 

  • Hao S, Han X, Guo Y, Xu X, Wang M (2020) Low-light image enhancement with semi-decoupled decomposition. IEEE Trans Multimed 12(22):3025–3038

    Article  Google Scholar 

  • Herscovitz M, Pecht Y (2004) A modified multi scale retinex algorithm with an improved global impression of brightness for wide dynamic range pictures. Mach Vis Appl 15:220–228. https://doi.org/10.1007/s00138-004-0138-5

    Article  Google Scholar 

  • Hsieh P, Shao P, Yang S (2020) Adaptive variational model for contrast enhancement of low-light images. SIAM J Imaging Sci 13(1):1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Jobson D, Rahman Z, Woodell G (1997) Properties and performance of a center/surround retinex. IEEE Trans Image Process 3(6):451–462

    Article  Google Scholar 

  • Jobson D, Rahman Z, Woodell G (1997) A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans Image Process 7(6):965–976

    Article  Google Scholar 

  • Keith O, Jerome S (1974) The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publications Inc., Mineola. https://doi.org/10.1002/jsfa.6295

    Book  MATH  Google Scholar 

  • Kimmel R, Elad M, Shaked D, Keshet R, Sobel I (2003) A variational framework for retinex. Int J Comput Vis 52(1):0920–5691

    Article  MATH  Google Scholar 

  • Lee C, Lee C, Kim C (2012) Contrast enhancement based on layered difference representation. In: Proceedings 19th IEEE interantional conference image process (ICIP), vol 4, pp 965–968. Orlando, FL, USA. https://doi.org/10.1109/ICIP.2012.6467022

  • Li L, Wang R, Wang W, Gao W (2015) A low-light image enhancement method for both denoising and contrast enlarging. IEEE Int Conf Image Process 9:3730–3734. https://doi.org/10.1109/ICIP.2015.7351501

    Article  Google Scholar 

  • Li M, Liu J, Xiong Z et al (2016) Marlow: a joint multiplanar autoregressive and low-rank approach for image completion. IEEE Eur Conf Comput Vis 10:819–834. https://doi.org/10.1007/978-3-319-46478-7-50

    Article  Google Scholar 

  • Li M, Liu J, Yang W, Sun X, Guo Z (2018) Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans Image Process 6(27):2828–2841

    Article  MathSciNet  MATH  Google Scholar 

  • Liang Z, Shen P, Peng X et al (2016) Simultaneous enhancement and noise reduction of a single low-light image. IET Image Process 11(10):840–847

    Google Scholar 

  • Lore K, Akintayo A, Sarkar S (2017) LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recognit 61:650–662. https://doi.org/10.1016/j.patcog.2016.06.008

    Article  Google Scholar 

  • Morel J, Petro A, Sbert C (2014) Screened Poisson equation for image contrast enhancement. Image Process Line 4:16–29

    Article  Google Scholar 

  • Ng M, Wang W (2011) A total variation model for retinex. SIAM J Imaging Sci 1(4):345–365

    Article  MathSciNet  MATH  Google Scholar 

  • Pisano E, Zong S, Hemminger B et al (2002) Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J Digit Imaging 4(11):193–200

    Google Scholar 

  • Podlubny I (1999) Fractional differential equations, an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math Sci Eng 198:313–335

    MATH  Google Scholar 

  • Ren X, Li M, Cheng W, Liu J (2015) Joint enhancement and denoising method via sequential decomposition. IEEE Int Symp Circuits Syst 3:1–5. https://doi.org/10.1109/ISCAS.2018.8351427

    Article  Google Scholar 

  • Wang S, Zheng J, Hu H, Li B (2013) Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans Image Process 22(9):3538–3548

    Article  Google Scholar 

  • Wang L, Xiao L, Liu H, Wei Z (2014) Variational bayesian method for retinex. IEEE Trans Image Process 8(23):3381–3196

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao C, Shi Z (2013) Adaptive bilateral filtering and its application in retinex image enhancement. Int Conf Image Graph 7:45–49. https://doi.org/10.1109/ICIG.2013.15

    Article  Google Scholar 

  • Xu Y, Yin W, Wen Z, Zhang Y (2012) An alternating direction algorithm for matrix completion with nonnegative factors. Front Math China. https://doi.org/10.1007/s11464-012-0194-5

    Article  MathSciNet  MATH  Google Scholar 

  • Yang J, Jiang X, Pan C, Liu C (2016) Enhancement of low light level images with coupled dictionary learning. Int Conf Pattern Recognit 7:751–756. https://doi.org/10.1109/ICPR.2016.7899725

    Article  Google Scholar 

  • Yao W, Guo Z, Sun J et al (2019) Multiplicative moise removal for texture images based on adaptive anisotropic fractional diffusion equations. SIAM J Imaging Sci 12:839–873. https://doi.org/10.1137/18M1187192

    Article  MathSciNet  Google Scholar 

  • Ying Z, Li G, Gao W (2017) A bio-inspired multi-exposure fusion framework for low-light image enhancement. arXiv:1711.00591

  • Zhang J, Chen K (2015) A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM J Imaging Sci 4(8):2487–2518

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 8(20):2378–2386

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 7(26):3142–3155

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang K, Zuo W, Zhang L (2018a) FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans Image Process 9(27):4608–4622

    Article  MathSciNet  Google Scholar 

  • Zhang Q, Yuan G, Xiao C, Zhu L, Zheng W (2018b) High-quality exposure correction of underexposed photos. In: Proceedings 26th ACM international conference multimedia (ACM), pp 582–590. New York, NY, USA. https://doi.org/10.1145/3240508.3240595

  • Zhao E, Gao J (2022) An adaptive low-illumination image enhancement algorithm based on weighted least squares optimization. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/2181/1/012011

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (12171123, 11971131, 11871133, 11671111, U1637208, 61873071, 51476047), the Fundamental Research Funds for the Central Universities (HIT.NSRIF. 2020081, HIT.NSRIF202202, 2022FRFK060014, 2022FRFK060020), Guangdong Basic and Applied Basic Research Foundation (2020B1515310010, 2020B1515310006), The Natural Science Foundation of Heilongjiang Province of China (LH2022A011) and China Postdoctoral Science Foundation (2020M670893), China Society of Industrial and Applied Mathematics Young Women Applied Mathematics Support Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjuan Yao.

Ethics declarations

Conflict of interest

There is no conflict of interest among all authors of this manuscript.

Additional information

Communicated by Ke Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Guo, Z., Yao, W. et al. A novel low-light enhancement via fractional-order and low-rank regularized retinex model. Comp. Appl. Math. 42, 7 (2023). https://doi.org/10.1007/s40314-022-02140-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02140-6

Keywords

Mathematics Subject Classification

Navigation