Skip to main content
Log in

A finite elements approach for spread contract valuation via associated two-dimensional PIDE

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We study an efficient approach based on finite elements to value spread options on commodities whose underlying assets follow a dynamic described by a certain class of two-dimensional Levy models by solving their associated partial integro-differential equation (PIDE). To this end, we consider a Galerkin approximation in space along with an implicit \(\theta \)-scheme for time evolution. Diffusion and drift in the associated operator are discretized using an exact Gaussian quadrature, while the integral part corresponding to jumps is approximated using the symbol method introduced in Gaßand Glau (SIAM J Finan Math 9(3):930–965, 2018). A system with blocked Toeplitz with Toeplitz blocks (BTTB) matrix is efficiently solved via biconjugate stabilized gradient method (BICSTAB) with a circulant preconditioner at each time step. The technique is applied to the pricing of crack spread options between the prices of futures RBOB gasoline (reformulated blendstock for oxygenate blending) and West Texas Intermediate(WTI) oil in NYMEX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez O, Tourin A (1996) Viscosity solutions of nonlinear integro-differential equations. In: Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 13, pp. 293–317 . Elsevier

  • Ammar GS, Gragg WB (1988) Superfast solution of real positive definite toeplitz systems. SIAM J Matrix Anal Appl 9(1):61–76

    Article  MathSciNet  MATH  Google Scholar 

  • Barles G, Buckdahn R, Pardoux E (1997) Backward stochastic differential equations and integral-partial differential equations. Stochastics 60(1–2):57–83

    MathSciNet  MATH  Google Scholar 

  • Bitmead RR, Anderson BD (1980) Asymptotically fast solution of toeplitz and related systems of linear equations. Linear Algebra Appl 34:103–116

    Article  MathSciNet  MATH  Google Scholar 

  • Chan TF (1988) An optimal circulant preconditioner for toeplitz systems. SIAM J Sci Stat Comput 9(4):766–771

    Article  MathSciNet  MATH  Google Scholar 

  • Chan RH-F, Jin X-Q (2007) An introduction to iterative toeplitz solvers, vol 5. Society for Industrial and Applied Mathematics, PA

    Book  MATH  Google Scholar 

  • Chan RH, Jin X-Q, Yeung M-C (1991) The circulant operator in the banach algebra of matrices. Linear Algebra Appl 149:41–53

    Article  MathSciNet  MATH  Google Scholar 

  • Clift SS (2007) Linear and non-linear monotone methods for valuing financial options under two-factor, jump-diffusion models. PhD thesis, University of Waterloo

  • Cont R, Tankov P (2003) Financial modelling with jump processes. Chapman and Hall, CRC, Boca Raton

    MATH  Google Scholar 

  • de Hoog F (1987) A new algorithm for solving toeplitz systems of equations. Linear Algebra Appl 88:123–138

    Article  MathSciNet  MATH  Google Scholar 

  • Delsarte P, Genin Y, Kamp Y (1985) A generalization of the levinson algorithm for hermitian toeplitz matrices with any rank profile. IEEE Trans Acoust Speech Signal Process 33(4):964–971

    Article  MathSciNet  Google Scholar 

  • Eberlein E, Glau K (2014) Variational solutions of the pricing pides for european options in lévy models. Appl Math Finan 21(5):417–450

    Article  MATH  Google Scholar 

  • Freund RW (1994) A look-ahead bareiss algorithm for general toeplitz matrices. Numer Math 68(1):35–69

    Article  MathSciNet  MATH  Google Scholar 

  • Gaß M, Glau K (2018) A flexible galerkin scheme for option pricing in lévy models. SIAM J Finan Math 9(3):930–965

    Article  MATH  Google Scholar 

  • Glau K (2016) A feynman-kac-type formula for lévy processes with discontinuous killing rates. Finance Stochast 20(4):1021–1059

    Article  MathSciNet  MATH  Google Scholar 

  • Glau K (2016) Classification of lévy processes with parabolic kolmogorov backward equations. Theory Prob Appl 60(3):383–406

    Article  MathSciNet  MATH  Google Scholar 

  • Gray RM et al (2006) Toeplitz and circulant matrices: a review. Foundations and Trends® in Communications and Information Theory 2(3), 155–239

  • Hilber N, Reich N, Schwab C, Winter C (2009) Numerical methods for lévy processes. Finance Stochast 13(4):471

    Article  MATH  Google Scholar 

  • Jaimungal S, Surkov V (2009) Stepping through fourier space. Risk 2:78–83

    Google Scholar 

  • Kumar R (1985) A fast algorithm for solving a toeplitz system of equations. IEEE Trans Acoust Speech Signal Process 33(1):254–267

    Article  MathSciNet  MATH  Google Scholar 

  • Linders D, Schoutens W (2016) Basket option pricing and implied correlation in a one-factor lévy model. In: Innovations in Derivatives Markets, pp. 335–367. Springer, Cham

  • Lord R, Fang F, Bervoets F, Oosterlee CW (2008) A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM J Sci Comput 30(4):1678–1705

    Article  MathSciNet  MATH  Google Scholar 

  • Luciano E, Semeraro P (2010) Multivariate time changes for lévy asset models: characterization and calibration. J Comput Appl Math 233(8):1937–1953. https://doi.org/10.1016/j.cam.2009.08.119

    Article  MathSciNet  MATH  Google Scholar 

  • Matache A-M, Von Petersdorff T, Schwab C (2004) Fast deterministic pricing of options on lévy driven assets. ESAIM Math Model Numer Anal 38(1):37–71

    Article  MATH  Google Scholar 

  • Matache A-M, Nitsche P-A, Schwab C (2005) Wavelet Galerkin pricing of American options on lévy driven assets. Quant Finan 5(4):403–424

    Article  MATH  Google Scholar 

  • Miglio E, Sgarra C (2008) A finite element framework for option pricing with the bates model. arXiv preprint arXiv:0812.3083

  • Olivares P (2019) Basket option pricing approximations under jump-diffusion model. Polynom Theory Appl 10:577

    Google Scholar 

  • Olkin JA (1986) Linear and nonlinear deconvolution problems (optimization). PhD thesis, University of Microfilms International

  • Pham H (1998) Optimal stopping of controlled jump diffusi on processes: a viscosity solution approach. In: Journal of Mathematical Systems, Estimation and Control . Citeseer

  • Reich N, Schwab C, Winter C (2010) On kolmogorov equations for anisotropic multivariate lévy processes. Finance Stochast 14(4):527–567

    Article  MATH  Google Scholar 

  • Saad Y, Schultz MH (1986) Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869

    Article  MathSciNet  MATH  Google Scholar 

  • Schwab C, Hilber N, Winter C (2007) Computational methods for quantitative finance. Lecture Notes-ETHZ

  • Strang G (1986) A proposal for toeplitz matrix calculations. Stud Appl Math 74(2):171–176

    Article  MATH  Google Scholar 

  • Tankov P (2011) Pricing and hedging in exponential lévy models: review of recent results. In: Paris-Princeton Lectures on Mathematical Finance 2010, pp. 319–359

  • Tyrtyshnikov EE (1992) Optimal and superoptimal circulant preconditioners. SIAM J Matrix Anal Appl 13(2):459–473

    Article  MathSciNet  MATH  Google Scholar 

  • Van der Vorst HA (1992) Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644

    Article  MathSciNet  MATH  Google Scholar 

  • von Petersdorff T, Schwab C (2003) Wavelet discretizations of parabolic integrodifferential equations. SIAM J Numer Anal 41(1):159–180

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been funded by NSERC and Fields Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diaz Ciro.

Additional information

Communicated by Pierre Etore.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Olivares Pablo and Diaz Ciro contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pablo, O., Ciro, D. A finite elements approach for spread contract valuation via associated two-dimensional PIDE. Comp. Appl. Math. 42, 15 (2023). https://doi.org/10.1007/s40314-022-02149-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02149-x

Keywords

Mathematics Subject Classification

Navigation