Skip to main content
Log in

Hankel tensor-based model and \(L_1\)-Tucker decomposition-based frequency recovery method for harmonic retrieval problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Harmonic retrieval (HR) has a wide range of applications in the scenes where signals are modelled as a summation of sinusoids. Past works have developed a number of approaches to recover the original signals. Most of them rely on classical singular value decomposition, which are vulnerable to unexpected outliers. In this paper, to overcome this deficiency, we propose a new random-access HR model and develop robust algorithms combining \(L_1\)-Tucker decomposition methods of Hankel tensor and novel frequency recovery techniques to solve such HR problem. Simulations are designed to compare our proposed methods with some existing tensor-based algorithms for HR. The numerical results demonstrate the outlier-insensitivity of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

There is no associated data with this manuscript.

References

  • Agarwal K, Macháň R (2016) Multiple signal classification algorithm for super-resolution fluorescence microscopy. Nat Commun 7:1–9

    Article  Google Scholar 

  • Andersson CA, Bro R (1998) Improving the speed of multi-way algorithms: part I-Tucker3. Chemom Intell Lab 42:93–103

    Article  Google Scholar 

  • Brooks JP, Dulá J, Boone EL (2013) A pure \(L_1\)-norm principal component analysis. Comput Stat Data Anal 61:83–98

    Article  MATH  Google Scholar 

  • Chachlakis DG, Prater-Bennette A, Markopoulos PP (2019) \(L_1\)-norm Tucker tensor decomposition. IEEE Access 7:178454–178465

    Article  Google Scholar 

  • Chachlakis DG, Prater-Bennette A, Markopoulos PP (2020) \(L_1\)-norm higher-order orthogonal iterations for robust tensor analysis. 2020 International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 4826–4830

  • Chachlakis DG, Dhanaraj M, Prater-Bennette A, Markopoulos PP (2021) Dynamic \(L_1\)-norm Tucker tensor decomposition. IEEE J-STSP 15:587–602

    Google Scholar 

  • De Lathauwert L, De Moort B, Vandewallet J (2000) On the best rank-1 and rank-\((R_1, R_2,\ldots , R_N)\) approximation of higher-order tensors. SIAM J Matrix Anal Appl 21:1324–1342

    Article  MathSciNet  Google Scholar 

  • Dhanaraj M, Chachlakis DG, Markopoulos PP (2018) Incremental complex \(L_1\)-PCA for direction-of-arrival estimation. 2018 Western New York Image and Signal Processing Workshop (WNYISPW), IEEE, pp. 1–5

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:498–520

    Article  MATH  Google Scholar 

  • Kapteyn A, Neudecker H, Wansbeek T (1986) An approach ton-mode components analysis. Psychometrika 31:269–275

    Article  MATH  Google Scholar 

  • Kokkinakis K, Loizou PC (2008) Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients. J Acoust Soc Am 123:2379–2390

    Article  Google Scholar 

  • Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51:455–500

    Article  MathSciNet  MATH  Google Scholar 

  • Kumaresan R, Tufts D (2003) Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise. IEEE Trans Acoust Speech Signal Process 30:833–840

    Article  Google Scholar 

  • Kumaresan R, Scharf LL, Shaw AK (1986) An algorithm for pole-zero modeling and spectral analysis. IEEE Trans Acoust Speech Signal Process 34:637–640

    Article  Google Scholar 

  • Kung SY, Arun KS, Rao DVB (1983) State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem. J Opt Soc Am 73:1799–1811

    Article  Google Scholar 

  • Markopoulos PP, Dhanaraj M, Savakis A (2018) Adaptive \(L_1\)-norm principal-component analysis with online outlier rejection. IEEE J-STSP 12:1131–1143

    Google Scholar 

  • Mozaffari M, Markopoulos PP, Prater-Bennette A (2021) Improved \(L_1\)- Tucker via \(L_1\)-fitting. 2021 29th European Signal Processing Conference (EUSIPCO), IEEE, pp. 1075–1079

  • Papadopoulos CK, Nikias CL (1990) Parameter estimation of exponentially damped sinusoids using higher order statistics. IEEE Trans Acoust Speech Signal Process 38:1424–1436

    Article  Google Scholar 

  • Papy JM, De Lathauwer L, Van Huffel S (2010) Exponential data fitting using multilinear algebra: the single-channel and multi-channel case. Numer Linear Algebra Appl 12:809–826

    Article  MathSciNet  MATH  Google Scholar 

  • Qian C, Shi Y, Huang L, So HC (2018) Robust harmonic retrieval via block successive upper-bound minimization. IEEE Trans Signal Process 66:6310–6324

    Article  MathSciNet  MATH  Google Scholar 

  • Roy R, Kailath T (1989) ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust Speech Signal Process 37:984–995

    Article  MATH  Google Scholar 

  • Sklivanitis G, Tountas K, Tsagkarakis N, Pados DA, Batalama SN (2020 Optimal joint channel estimation and data detection by \(L_1\)-norm PCA for Streetscape IoT. 2020 International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 9051–9054

  • Talwar S, Viberg M, Paulraj A (1996) Blind separation of synchronous co-channel digital signals using an antenna array-part 1: algorithms. IEEE Trans Signal Process 44:1184–1197

    Article  Google Scholar 

  • Tountas K, Chachlakis D, Markopoulos PP, Pados DA (2019) Iteratively reweighted \(L_1\)-norm PCA of tensor data. 2019 53rd Asilomar Conference on Signals, Systems, and Computers, IEEE, pp. 1658–1661

  • Tsagkarakis N, Tsagkarakis PP, Pados DA (2018) \(L_1\)-norm principal component analysis of complex data. IEEE Trans Signal Process 66:3256–3267

    Article  MathSciNet  MATH  Google Scholar 

  • Tucker L (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31:279–311

    Article  MathSciNet  Google Scholar 

  • Vorobyov SA, Yue R, Sidiropoulos ND, Gershman AB (2005) Robust iterative fitting of multilinear models. IEEE Trans Signal Process 53:2678–2689

    Article  MathSciNet  MATH  Google Scholar 

  • Wen F, So HC (2015) Robust multi-dimensional harmonic retrieval using iteratively reweighted HOSVD. IEEE Signal Process Lett 22:2464–2468

    Article  Google Scholar 

  • Yokota T, Cichocki A (2014) Multilinear tensor rank estimation via sparse tucker decomposition. 2014 Joint 7th International Conference on Soft computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), IEEE, pp. 478–483

  • Zarzoso V, Nandi AK (2001) Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation. IEEE Trans Biomed Eng 48:12–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zhang.

Additional information

Communicated by Yimin Wei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Grant no. 12171271).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, Z., Ming, Z., Wu, Y. et al. Hankel tensor-based model and \(L_1\)-Tucker decomposition-based frequency recovery method for harmonic retrieval problem. Comp. Appl. Math. 42, 14 (2023). https://doi.org/10.1007/s40314-022-02151-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02151-3

Keywords

Mathematics Subject Classification

Navigation