Skip to main content
Log in

The NHRS scheme for the two models of traffic flow

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Within the numerical framework of non-homogeneous Riemann solver (NHRS) the nonlinear models characterizing traffic flows are investigated. Namely, we investigate the Lighthill–Whitham–Richards (LWR) traffic flow model and the Aw–Rascle model with a two-parameter flux approximation containing pressure. One of the main merits of this scheme, it computes the numerical flux corresponding the real state of solution in the obscurity of Riemann solution. Applying our scheme to a wide variety of numerical test cases, shows the high resolution of the proposed technique. Indeed, the presented results emphasizes the capability of this scheme to eliminate the oscillations of the classical schemes and controlling numerical diffusion. Numerical solutions are compared with Rusanov scheme, modified Lax–Friedrichs and the analytical solution. The presented results illustrate the precise resolution of the NHRS scheme. Indeed, the solutions of the NHRS scheme is more accurate than the solutions of the modified Lax–Friedrichs, Rusanov scheme. Finally, the proposed scheme is such a strong tool to tackle numerous different models in real-life problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abdelrahman MAE, Alharbi A (2021) Analytical and numerical investigations of the modified Camassa–Holm equation. Pramana J Phys 95:117

    Article  Google Scholar 

  • Abdelrahman MAE, Almatrafi MB, Alharbi A (2020) Fundamental solutions for the coupled KdV system and its stability. Symmetry 12(3):429

    Article  Google Scholar 

  • Abdelrahman MAE, Alkhidhr HA, Mohamed K (2022) Simulating isothermal Euler model with non-vacuum initial data via mR scheme. J Low Frequ Noise Vib Active Control 41(4):1466–1477

    Article  Google Scholar 

  • Aw A, Rascle M (2000) Resurrection of second order models of traffic flow. SIAM J Appl Math 60(3):916–938

    Article  MathSciNet  MATH  Google Scholar 

  • Aw A, Rascle M (2000) Resurrection of “second order’’ models of traffic llow. SIAM J Appl Math 60:916–938

    Article  MathSciNet  MATH  Google Scholar 

  • Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y (1995) Dynamical model of traffic congestion and numerical simulation. Phys Rev E 51:1035–1042

    Article  Google Scholar 

  • Benkhaldoun F, Mohamed K, Seaid M (2011) A Generalized Rusanov method for Saint-Venant equations with variable horizontal density. In: FVCA international symposium, Prague; June 6–10, 96–112

  • Bretti G, Natalini R, Picolli B (2007) A fluid-dynamic traffic model on road networks. Arch Comput Methods Eng 14:139–172

    Article  MathSciNet  MATH  Google Scholar 

  • Daganzo C (1995) Requiem for second order fluid approximations of traffic flow. Transp Res Part B 29:277–286

    Article  Google Scholar 

  • Delis AI, Nikolos IK, Papageorgiou M (2014) High-resolution numerical relaxation approximations to second-order macroscopic traffic flow models. Transp Res Part C Emerg Technol 44:318–349

    Article  Google Scholar 

  • Garavello M, Piccoli B (2006) Traffic flow on networks. AIMS

    MATH  Google Scholar 

  • Haberman R (1998) Mathematical models: mechanical vibrations, population dynamics, and traffic flow. SIAM, Philadephia

    Book  MATH  Google Scholar 

  • Herty M, Rascle M (2006) Coupling conditions for a class of second-order models for traffic flow. SIAM J Math Anal 38(2):595–616

    Article  MathSciNet  MATH  Google Scholar 

  • LeVeque RJ (2002) Finite volume methods for hyperbolic problems, Vol. 31. Cambridge University Press,

  • LeVeque RJ (1992) Numerical methods for conservation laws. Birkhäuser Verlag Basel, Switzerland

    Book  MATH  Google Scholar 

  • Lighthill MJ, Whitham GB (1955) On kinematic waves II, A theory of traffic flow on long crowded roads. Proc R Soc 229(1178):317–345

    MathSciNet  MATH  Google Scholar 

  • Mattheij RM, Rienstra SW, ten Thije Boonkkamp JH (2005) Partial differential equations: modeling, analysis, computation. Siam

  • Mohamed K (2005) Simulation numérique en volume finis, de problémes d’écoulements multidimensionnels raides, par un schéma de flux á deux pas, Dissertation, University of Paris 13

  • Mohamed K (2014) A finite volume method for numerical simulation of shallow water models with porosity. Comput Fluids 104:9–19

    Article  MathSciNet  MATH  Google Scholar 

  • Mohamed K, Abdelrahman MAE (2021) The modified Rusanov scheme for solving the ultra-relativistic Euler equations. Eur J Mech B Fluids 90:89–98

    Article  MathSciNet  MATH  Google Scholar 

  • Mohamed K, Abdelrahman MAE (2022) The modified Rusanov scheme for solving the phonon-Bose model. Int J Nonlinear Sci Numer Simul. https://doi.org/10.1515/ijnsns-2021-0305

    Article  Google Scholar 

  • Mohamed K, Benkhaldoun F (2016) A modified Rusanov scheme for shallow water equations with topography and two phase flows. Eur Phys J Plus 131:207

    Article  Google Scholar 

  • Mohamed K, Seaid M, Zahri M (2013) A finite volume method for scalar conservation laws with stochastic time-space dependent flux function. J Comput Appl Math 237:614–632

    Article  MathSciNet  MATH  Google Scholar 

  • Mohamed K, Alkhidhr HA, Abdelrahman MAE (2022) The NHRS scheme for the Chaplygin gas model in one and two dimensions. AIMS Math 7(10):17785–17801

    Article  MathSciNet  Google Scholar 

  • Mohamed K, Sahmim S, Abdelrahman MAE (2022) A Predictor-corrector scheme for simulation of two-phase granular flows over a moved bed with a variable topography. Eur J Mech B Fluids 96:39–50

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadian S, Wageningen F (2018) Improved numerical method for Aw-rascle type continuum traffic flow models. Transp Res Rec 2672(20):262–276

    Article  Google Scholar 

  • Mohammadian S, Zheng Z, Haque MdM, Bhaskar A (2021) Performance of continuum models for realworld traffic flows: Comprehensive benchmarking. Transp Res Part B Methodol 147:132–167

    Article  Google Scholar 

  • Mohammadian S, Moghaddam AM, Sahaf A (2021) On the performance of HLL, HLLC, and Rusanov solvers for hyperbolic traffic models. Comput Fluids 231:105161

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadian S, Zheng Z, Haque MdM, Bhaskar A (2022) Continuum modelling of freeway traffic flows in the era of connected and automated vehicles: a critical perspective and research needs, arXiv:2111.04955,

  • Ngoduy D, Liu R (2007) Multiclass first-order simulation model to explain non-linear traffic phenomena. Phys A Stat Mech Appl 385(2):667–682

    Article  Google Scholar 

  • Richards PI (1956) Shock waves on the highways. Oper Res 4:42–51

    Article  MathSciNet  MATH  Google Scholar 

  • Smoller JA (1983) Shock waves and reaction-diffusion equations. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21:995–1011

    Article  MathSciNet  MATH  Google Scholar 

  • Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Zhang H (2002) A non-equilibrium traffic model devoid of gas-like behavior. Transp Res Part B 36:275–290

    Article  Google Scholar 

  • Zhang HM (2002) A non-equilibrium traffic model devoid of gas-like behavior. Transp Res Part B Methodol 36:275–290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. E. Abdelrahman.

Additional information

Communicated by Corina Giurgea.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, K., Abdelrahman, M.A.E. The NHRS scheme for the two models of traffic flow. Comp. Appl. Math. 42, 53 (2023). https://doi.org/10.1007/s40314-022-02172-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02172-y

Keywords

Mathematics Subject Classifications

Navigation