Skip to main content
Log in

An inverse problem of identifying the coefficient in a nonlinear time-fractional diffusion equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The paper deals with an inverse problem of identifying parameters in a nonlinear subdiffusion model from a final observation. The nonlinear subdiffusion model involves a Caputo fractional derivative of order \(\alpha \in (0,1)\) in time. Such problem has important application in a large field of applied science. To treat our model, we first study the regularity of the solution for the direct problem by means of Mittag–Leffler functions. Second, to study our inverse parameter problem, we reformulate it into an optimal control one with a Least Squares cost function and we establish the existence of the optimal solution. Third, we show the uniqueness and stability with respect to the data of our inverse problem based on the optimality conditions of the considered functional and the regularity of the solution for the direct problem. Finally, we present some numerical experiments using descent gradient algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams RA (1975) Sobolev Spaces. Academic Press, New York

    MATH  Google Scholar 

  • Afraites L, Atlas A (2015) Parameters identification in the mathematical model of immune competition cells. J Inverse Ill-posed Probl 23(4):323–337

    MathSciNet  MATH  Google Scholar 

  • Afraites L, Hadri A, Laghrib A, Nachaoui M (2021) A high order pde-constrained optimization for the image denoising problem. Inverse Probl Sci Eng 29(12):1821–1863

    MathSciNet  MATH  Google Scholar 

  • Afraites L, Hadri A, Laghrib A, Nachaoui M (2022) A weighted parameter identification pde-constrained optimization for inverse image denoising problem. Vis Comput 38(8):2883–2898

    MATH  Google Scholar 

  • Afraites L, Oulmelk A (2021) Identification of robin coefficient in elliptic problem by a coupled complex boundary method. In International conference on numerical analysis and optimization days. Springer, pp 71–86

  • Aissam Hadri L, Afraites AL, Nachaoui M (2021) A novel image denoising approach based on a non-convex constrained PDE: application to ultrasound images. SIViP 15(5):1057–1064

    MATH  Google Scholar 

  • Al-Refaia M, Luchko Y (2015) Maximum principle for the multi-term time-fractional diffusion equations with the Riemann–Liouville fractional derivatives. Appl Math Comput 257(1):40–51

    MathSciNet  MATH  Google Scholar 

  • Badry H, Oufni L, Ouabi H, Iwase H, Afraites L (2019) A new fast algorithm to achieve the dose uniformity around high dose rate brachytherapy stepping source using tikhonov regularization. Austr Phys Eng Sci Med 42(3):757–769

    Google Scholar 

  • Cherstvy AG, Metzler R, Jeon JH, Barkai E (2014) Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys 16(44):24128–24164

    Google Scholar 

  • Hatano Y, Hatano N (1998) Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour Res 34(5):1027–1033

    Google Scholar 

  • Jiang Y, Ma J (2011) High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math 235(11):3285–3290

    MathSciNet  MATH  Google Scholar 

  • Jin B, Rundell W (2012) An inverse problem for a one-dimensional time-fractional diffusion problem. Inverse Prob 28(7):075010

    MathSciNet  MATH  Google Scholar 

  • Jin B, Zhou Z (2020) An inverse potential problem for subdiffusion: stability and reconstruction. Inverse Prob 37(1):015006

    MathSciNet  MATH  Google Scholar 

  • Jin B, Zhou Z (2021) Numerical estimation of a diffusion coefficient in subdiffusion. SIAM J Control Optim 59:1466–1496, 03

    MathSciNet  MATH  Google Scholar 

  • Jin B, Yan Y, Zhou Z (2019) Numerical approximation of stochastic time-fractional diffusion. ESAIM Math Modell Numer Anal 53(4):1245–1268

    MathSciNet  MATH  Google Scholar 

  • Jin B, Li B, Zhou Z (2019) Subdiffusion with a time-dependent coefficient: analysis and numerical solution. Math Comput 88(319):2157–2186

    MathSciNet  MATH  Google Scholar 

  • Kaltenbacher B, Rundell W (2019) On the identification of a nonlinear term in a reaction–diffusion equation. Inverse Prob 35(11):115007

    MathSciNet  MATH  Google Scholar 

  • Li L, Liu JG (2018) Some compactaness criteria for weak solutions of time fractional pdes. SIAM J Math Anal 40(5):3963–3995

    MATH  Google Scholar 

  • Lin Y, Chuanju X (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225(2):1533–1552

    MathSciNet  MATH  Google Scholar 

  • Luchko Y (2009) Maximum principle for the generalized time-fractional diffusion equation. J Math Anal Appl 351(1):218–223

    MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    MathSciNet  MATH  Google Scholar 

  • Miller L, Yamamoto M (2013) Coefficient inverse problem for a fractional diffusion equation. Inverse Prob 29(7):1–8

    MathSciNet  MATH  Google Scholar 

  • Murio DA (2008) Implicit finite difference approximation for time fractional diffusion equations. Comput Math Appl 56(4):1138–1145

    MathSciNet  MATH  Google Scholar 

  • Nigmatullin RR (1986) The realization of the generalized transfer equation in a medium with fractal geometry. Phys Status Sol (B) 133(1):425–430

    MathSciNet  Google Scholar 

  • Oulmelk A, Afraites L, Hadri A, Nachaoui M (2022) An optimal control approach for determining the source term in fractional diffusion equation by different cost functionals. Appl Numer Math 181:647–664

    MathSciNet  MATH  Google Scholar 

  • Oulmelk A, Srati M, Afraites L, Hadri A (2022) Implementation of the ADMM approach to constrained optimal control problem with a nonlinear time-fractional diffusion equation. Discret Contin Dyn Syst S. https://doi.org/10.3934/dcdss.2022194

    Article  Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1(2):93–122

    Google Scholar 

  • Podlubny I (1999) Fractional differential equations, vol 198. Academic Press, London

    MATH  Google Scholar 

  • Prakash MP, Yong-Ki DA (2019) Optimization method for determining the source term in fractional diffusion equation. Math Comput Simul 155:168–176

    MathSciNet  MATH  Google Scholar 

  • Sakamoto K, Yamamoto M (2011) Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math Anal Appl 382(1):426–447

    MathSciNet  MATH  Google Scholar 

  • Scher H, Berkowitz B, Silliman SE (2000) Anomalous transport in laboratory-scale, heterogeneous porous media. Warer Resour Res 36(1):149–158

    Google Scholar 

  • Sokolov IM, Klafter J (2005) From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. J Nonlinear Sci 15(2):1–7

    MathSciNet  MATH  Google Scholar 

  • Ting W, Gang WJ (2016) Determination of robin coefficient in a fractional diffusion problem. Appl Math Model 40(17–18):7948–7961

    MathSciNet  MATH  Google Scholar 

  • Ting W, Li YS (2018) Identifying a diffusion coefficient in a time-fractional diffusion equation. Math Comput Simul 151:03

    MathSciNet  Google Scholar 

  • Trujillo J, Kilbas A, Srivastava H (2006) Theory and applications of fractional differential equations, vol 204. Elsevier, New York

    MATH  Google Scholar 

  • Wheatcraft SW, Benson DA, Meerschaert MM (2000) The fractional-order governing equation of lévy motion. Water Resour Res 36(6):1413–1423

    Google Scholar 

  • Xianjuan Chuanju Xu Li (2010) Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun Comput Phys 8(5):1016–1051

    MathSciNet  MATH  Google Scholar 

  • Yamamoto M, Zou J (2001) Simultaneous reconstruction of the initial temperature and heat radiative coefficient. Inverse Prob 17(4):1181

    MathSciNet  MATH  Google Scholar 

  • Yan X, Wei T (2020) Determine a space-dependent source term in a time fractional diffusion-wave equation. Acta Appl Math 165:02

    MathSciNet  Google Scholar 

  • Yue K, Zhang X, Zuo YY (2008) Noninvasive method for simultaneously measuring the thermophysical properties and blood perfusion in cylindrically shaped living tissues. Cell Biochem Biophys 50(1):41–51

    Google Scholar 

  • Zeghal A (2002) Existence results for inverse problems associated with a nonlinear parabolic equation. J Math Anal Appl 272(1):240–248

    MathSciNet  MATH  Google Scholar 

  • Zhang Z, Zhou Z (2017) Recovering the potential term in a fractional diffusion equation. IMA J Appl Math 82(3):579–600

    MathSciNet  MATH  Google Scholar 

  • Zhuang P, Liu F (2006) Implicit difference approximation for time fractional diffusion equation. J Appl Math Comput 22(3):87–99

    MathSciNet  MATH  Google Scholar 

  • Zui-Cha J-NY, Deng LY, Luo G-W (2009) An inverse problem of identifying the coefficient in a nonlinear parabolic equation. Nonlinear Anal 71:6212–6221

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Afraites.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oulmelk, A., Afraites, L. & Hadri, A. An inverse problem of identifying the coefficient in a nonlinear time-fractional diffusion equation. Comp. Appl. Math. 42, 65 (2023). https://doi.org/10.1007/s40314-023-02206-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02206-z

Keywords

Mathematics Subject Classification

Navigation