Skip to main content
Log in

Classical and non-classical Lie symmetry analysis, conservation laws and exact solutions of the time-fractional Chen–Lee–Liu equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The current work deals with the classical and non-classical Lie group analysis for the fractional type system of nonlinear Chen–Lee–Liu (CLL) equations. The invariance surface condition is imposed to this system of fractional differential equations to find non-classical generators. Non-classical and classical Lie symmetry analysis are used to similarity reductions of this system. Corresponding exact solutions are obtained for the extracted generators in both classical and non-classical senses. Convergence of the obtained solutions when fractional order tends to the integer one, is graphically checked. Finally, the conservation laws are investigated for the system of time-fractional CLL equations, specially for the non-classical vector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data availability is not applicable for this paper.

Notes

  1. Here

    $$\begin{aligned}{} & {} \begin{aligned} \bigg ({\mathcal {P}}^{\tau ,\alpha }_{\beta }{\mathcal {F}}\bigg ):=\prod _{j=0}^{n-1}\bigg (\tau +j-\frac{1}{\beta }\zeta \frac{{\textrm{d}}}{{\textrm{d}}\zeta }\bigg ) \bigg ({\mathcal {K}}^{\tau +\alpha ,n-\alpha }_\beta {\mathcal {F}}\bigg )(\zeta ), \end{aligned}\\{} & {} \begin{aligned} n= {\left\{ \begin{array}{ll} [\alpha ]+1,&{}\quad \alpha \not \in {\mathbb {N}}\\ \alpha ,&{}\quad \alpha \in {\mathbb {N}} \end{array}\right. } \end{aligned} \end{aligned}$$

    and

    $$\begin{aligned} \begin{aligned} \bigg ({\mathcal {K}}^{\tau ,\alpha }_{\beta }{\mathcal {F}}\bigg ):= {\left\{ \begin{array}{ll} \dfrac{1}{\varGamma (\alpha )}\displaystyle \int _1^{\infty }(s-1)^{\alpha -1}s^{-(\tau +\alpha )}{\mathcal {F}}\big (\zeta s^{\frac{1}{\beta }}\big ){\textrm{d}}s, &{}\quad \alpha >0,\\ {\mathcal {F}}(\zeta ),&{}\quad \alpha =0, \end{array}\right. } \end{aligned} \end{aligned}$$

    show the Erdélyi–Kober fractional derivative and integral operators for \( {\mathcal {F}}(\zeta ).\)

References

  • Akbulut A, Mirzazadeh M, Hashemi MS, Hosseini K, Salahshour S, Park C (2022) Triki–Biswas model: its symmetry reduction. Nucci’s Reduct Conserv Laws 2022:2350063

    Google Scholar 

  • Bakkyaraj T, Sahadevan R (2015) Invariant analysis of nonlinear fractional ordinary differential equations with Riemann–Liouville fractional derivative. Nonlinear Dyn 80(1–2):447–455

    MathSciNet  MATH  Google Scholar 

  • Baleanu D, Machado JAT, Luo AC (2011) Fractional dynamics and control. Springer, London

    Google Scholar 

  • Bansal A, Biswas A, Zhou Q, Arshed S, Alzahrani AK, Belic MR (2020) Optical solitons with Chen–Lee–Liu equation by lie symmetry. Phys Lett A 384(10):126202

    MathSciNet  MATH  Google Scholar 

  • Bluman G, Anco S (2008) Symmetry and integration methods for differential equations, vol 154. Springer, London

    MATH  Google Scholar 

  • Bluman GW, Cole JD (1969) The general similarity solution of the heat equation. J Math Mech 18(11):1025–1042

    MathSciNet  MATH  Google Scholar 

  • Chen H, Lee Y, Liu C (1979) Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys Scr 20(3–4):490

    MathSciNet  MATH  Google Scholar 

  • Chu YM, Inc M, Hashemi MS, Eshaghi S (2022) Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces. Comput Appl Math 41(6):1–17

    MathSciNet  MATH  Google Scholar 

  • Clarkson PA, Mansfield EL (1994) Algorithms for the nonclassical method of symmetry reductions. SIAM J Appl Math 54(6):1693–1719

    MathSciNet  MATH  Google Scholar 

  • Cui Z, Yu P, Mao Z (2012) Existence of solutions for nonlocal boundary value problems of nonlinear fractional differential equations. Adv Dyn Syst Appl 7(1):31–40

    MathSciNet  Google Scholar 

  • Depelair B, Hammouch Z, Houwé A, Mibailé J, Gambo B (2019) Chirped soliton with fractional temporal evolution in optical metamaterials. Fract Differ Equ Methods Math Model 2019:14

    Google Scholar 

  • Dépélair B, Gambo B, Nsangou M (2021) Effects of fractional temporal evolution on chirped soliton solutions of the Chen–Lee–Liu equation. Phys Scr 96:1

    Google Scholar 

  • Feng L, Zhang T (2018) Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation. Appl Math Lett 78:133–140

    MathSciNet  MATH  Google Scholar 

  • Feng LL, Tian ShF, Wang XB, Zhang TT (2016) Lie Symmetry analysis, conservation laws and exact power series solutions for time-fractional Fordy–Gibbons equation. Commun Theor Phys 66:321–329

    MathSciNet  MATH  Google Scholar 

  • Gaeta G, Morando P (2004) On the geometry of lambda-symmetries and PDE reduction. J Phys A Math Gen 37(27):6955–6975

    MathSciNet  MATH  Google Scholar 

  • Gaul L, Klein P, Kemple S (1991) Damping description involving fractional operators. Mech Syst Signal Process 5(2):81–88

    Google Scholar 

  • Gazizov RK, Kasatkin AA, Lukashchuk SY (2007) Continuous transformation groups of fractional differential equations. Vestnik Usatu 9(3):21

    Google Scholar 

  • Gazizov R, Ibragimov N, Lukashchuk SY (2015) Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional kompaneets equations. Commun Nonlinear Sci Numer Simul 23(1–3):153–163

    MathSciNet  MATH  Google Scholar 

  • Grigoriev YN, Kovalev VF, Meleshko SV, Ibragimov NH (2010) Symmetries of integrodifferential equations: with applications in mechanics and plasma physics. Springer, London

    MATH  Google Scholar 

  • Hashemi MS (2021) A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative. Chaos Solitons Fractals 152:111367

    MathSciNet  MATH  Google Scholar 

  • Hashemi MS, Akgül A (2018) Solitary wave solutions of time-space nonlinear fractional Schrödinger’s equation: two analytical approaches. J Comput Appl Math 339:147–160

    MathSciNet  MATH  Google Scholar 

  • Hashemi MS, Baleanu D (2020) Lie symmetry analysis of fractional differential equations. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Hashemi MS, Haji-Badali A, Alizadeh F, Inc M (2021a) Non-classical Lie symmetry and conservation laws of the nonlinear time-fractional Korteweg–de Vries (KdV) equation. Commun Theor Phys 73(9):095006

  • Hashemi MS, Haji-Badali A, Alizadeh F (2021b) Non-classical Lie symmetry and conservation laws of the nonlinear time-fractional Kundu–Eckhaus (KE) equation. Pramana 95(3):1–12

  • Hashemi MS, Haji-Badali A, Alizadeh F, Yang XJ (2022) Non-classical Lie symmetries for nonlinear time-fractional Heisenberg equations. Math Methods Appl Sci 45(16):10010–10026

    MathSciNet  Google Scholar 

  • Ibragimov NH (1995) CRC handbook of Lie group analysis of differential equations, vol 3. CRC Press, London

    MATH  Google Scholar 

  • Ibragimov NH (2007) A new conservation theorem. J Math Anal Appl 333(1):311–328

    MathSciNet  MATH  Google Scholar 

  • Jhangeer A, Hussain A, Junaid-U-Rehman M, Khan I, Baleanu D, Sooppy Nisar K (2020) Lie analysis, conservation laws and travelling wave structures of nonlinear Bogoyavlenskii–Kadomtsev–Petviashvili equation. Results Phys 19:103492

    Google Scholar 

  • Jhangeer A, Hussain A, Junaid-U-Rehman M, Baleanu D, Riaz MB (2021) Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation. Chaos Solitons Fractals 143:110578

    MathSciNet  MATH  Google Scholar 

  • Khan SA, Shah K, Zaman G, Jarad F (2019) Existence theory and numerical solutions to smoking model under Caputo–Fabrizio fractional derivative. Chaos Interdiscip J Nonlinear Sci 29(1):1

    MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, London

    MATH  Google Scholar 

  • Lie S (1995) On integration of a class of linear partial differential equations by means of definite integrals. Arch Math Nat VI(3):1881 (pp 328–368, in German. Reprinted in Lie S (ed) Gesammelte Abhandlundgen, vol. 3, paper XXXV (English translation published in Ibragimov NH (ed) CRC Handbook of Lie group analysis of differential equations, vol 2. CRC Press, Boca Raton)

  • Liu H, Li J, Zhang Q (2009) Lie symmetry analysis and exact explicit solutions for general Burgers’ equation. J Comput Appl Math 228(1):1–9

    MathSciNet  MATH  Google Scholar 

  • Lukashchuk SY (2015) Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn 80(1–2):791–802

    MathSciNet  MATH  Google Scholar 

  • Mao JJ, Tian ShF, Zhang TT, Yan XJ (2020) Lie symmetry analysis, conservation laws and analytical solutions for chiral nonlinear Schrödinger equation in \((2 + 1)\)-dimensions. Nonlinear Anal Model Control 25(3):358–377

    MathSciNet  MATH  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, London

    MATH  Google Scholar 

  • Monje CA, Chen Y, Vinagre BM, Xue D, Feliu-Batlle V (2010) Fractional-order systems and controls: fundamentals and applications. Springer, London

    MATH  Google Scholar 

  • Najafi R, Bahrami F, Hashemi MS (2017) Classical and nonclassical lie symmetry analysis to a class of nonlinear time-fractional differential equations. Nonlinear Dyn 87(3):1785–1796

    MathSciNet  MATH  Google Scholar 

  • Nucci M, Clarkson P (1992) The nonclassical method is more general than the direct method for symmetry reductions, an example of the Fitzhugh–Nagumo equation. Phys Lett A 164(1):49–56

    MathSciNet  Google Scholar 

  • Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier, London

    MATH  Google Scholar 

  • Olver PJ (2000) Applications of Lie groups to differential equations, vol 107. Springer, London

    MATH  Google Scholar 

  • Pashayi S, Hashemi MS, Shahmorad S (2017) Analytical lie group approach for solving fractional integro-differential equations. Commun Nonlinear Sci Numer Simul 51:66–77

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Bakkyaraj T (2012) Invariant analysis of time fractional generalized burgers and Korteweg–de Vries equations. J Math Anal Appl 393(2):341–347

    MathSciNet  MATH  Google Scholar 

  • Tian SF (2020) Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation. Appl Math Lett 100:106056

    MathSciNet  MATH  Google Scholar 

  • Wael S, Seadawy AR, El-Kalaawy OH, Maowad SM, Baleanu D (2020) Symmetry reduction, conservation laws and acoustic wave solutions for the extended Zakharov–Kuznetsov dynamical model arising in a dust plasma. Results Phys 19:103652

    Google Scholar 

  • Wang H, Tian ShF, Zhang TT, Chen Y, Fang Y (2019) General lump solutions, Lumpoff solutions, and rogue wave solutions with predictability for the \((2+1)\)-dimensional Korteweg–de Vries equation. Comput Appl Math 38(4):1–15. https://doi.org/10.1007/s40314-019-0938-x

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Liu W, Qiu D, Zhang Y, Porsezian K, He J (2015) Rogue wave solutions of a higher-order Chen–Lee–Liu equation. Phys Scr 90(5):055207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Additional information

Communicated by Vasily E. Tarasov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M.S., Haji-Badali, A., Alizadeh, F. et al. Classical and non-classical Lie symmetry analysis, conservation laws and exact solutions of the time-fractional Chen–Lee–Liu equation. Comp. Appl. Math. 42, 73 (2023). https://doi.org/10.1007/s40314-023-02217-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02217-w

Keywords

Mathematics Subject Classification

Navigation