Skip to main content
Log in

The numerical solution of nonlinear delay Volterra integral equations using the thin plate spline collocation method with error analysis

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Delay integral equations can be used to model a large variety of phenomena more realistically by intervening in the history of processes. Indeed, the past exerts its influences on the present and, hence, on the future of these models. This paper presents a numerical method for solving nonlinear Volterra integral equations of the second kind with delay arguments. The method uses the discrete collocation approach together with thin plate splines as a type of free-shape parameter radial basis functions. Therefore, the offered scheme establishes an effective and stable algorithm to estimate the solution, which can be easily implemented on a personal computer with normal specifications. We employ the composite Gauss–Legendre integration rule to estimate all integrals that appeared in the method. The error analysis of the presented method is provided. The convergence validity of the new technique is examined over several nonlinear delay integral equations, and obtained results confirm the theoretical error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amin R, Shah K, Asif M, Khan I (2020) Efficient numerical technique for solution of delay Volterra-Fredholm integral equations using Haar wavelet. Heliyon 6(10):e05108

    Google Scholar 

  • Arqub OA, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243:911–922

    MathSciNet  MATH  Google Scholar 

  • Arqub OA, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219(17):8938–8948

    MathSciNet  MATH  Google Scholar 

  • Assari P, Dehghan M (2017a) A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions. Appl Math Comput 315:424–444

    MathSciNet  MATH  Google Scholar 

  • Assari P, Dehghan M (2017b) The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision. Eng Comput 33(4):853–870

    Google Scholar 

  • Assari P, Dehghan M (2019) Application of thin plate splines for solving a class of boundary integral equations arisen from Laplace’s equations with nonlinear boundary conditions. Int J Comput Math 96(1):170–198

    MathSciNet  MATH  Google Scholar 

  • Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239:72–92

    MathSciNet  MATH  Google Scholar 

  • Atkinson KE (1973) The numerical evaluation of fixed points for completely continuous operators. SIAM J Numer Anal 10:799–807

    MathSciNet  MATH  Google Scholar 

  • Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bejancu A Jr (1999) Local accuracy for radial basis function interpolation on finite uniform grids. J Approx Theory 99(2):242–257

    MathSciNet  MATH  Google Scholar 

  • Bellour A, Bousselsal M (2014) A Taylor collocation method for solving delay integral equations. Numer Algorithms 65(4):843–857

    MathSciNet  MATH  Google Scholar 

  • Brunner H (1989) Collocation methods for nonlinear Volterra integro-differential equations with infinite delay. Math Comput 53(188):571–587

    MathSciNet  MATH  Google Scholar 

  • Brunner H (1994) Iterated collocation methods for Volterra integral equations with delay arguments. Math Comput 62(206):581–599

    MathSciNet  MATH  Google Scholar 

  • Brunner H (2004) Collocation methods for Volterra integral and related functional differential equations. Cambridge University Press, New York

    MATH  Google Scholar 

  • Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Cahlon B (1992) Numerical solutions for functional integral equations with state-dependent delay. Appl Numer Math 9(3–5):291–305

    MathSciNet  MATH  Google Scholar 

  • Chamayou JMF, El-Tom MEA (1975) On the approximate solution of the delay integral equation of the statistical theory of radiation damage. Comput Phys Commun 9(3):131–140

    MATH  Google Scholar 

  • Cooke KL (1976) An epidemic equation with immigration. Math Biosci 29(1–2):135–158

    MathSciNet  MATH  Google Scholar 

  • Cooke KL, Kaplan JL (1976) A periodicity threshold theorem for epidemics and population growth. Math Biosci 31(1–2):87–104

    MathSciNet  MATH  Google Scholar 

  • Cooke KL, Yorke JA (1973) Some equations modelling growth processes and gonorrhea epidemics. Math Biosci 16(1–2):75–101

    MathSciNet  MATH  Google Scholar 

  • Cuomo S, Galletti A, Giunta G, Starace A (2013) Surface reconstruction from scattered point via RBF interpolation on GPU. Acsis-Ann Comput Sci, pp 433–440

  • Cuomo S, Galletti A, Giunta G, Marcellino L (2017) Reconstruction of implicit curves and surfaces via RBF interpolation. Appl Numer Math 116:157–171

    MathSciNet  MATH  Google Scholar 

  • Darania P, Pishbin S (2017) High-order collocation methods for nonlinear delay integral equation. J Comput Appl Math 326:284–295

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79(3):700–715

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J Comput Appl Math 230(2):400–410

    MathSciNet  MATH  Google Scholar 

  • Duchon J (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Springer Berlin Heidelberg, Berlin, pp 85–100

    MATH  Google Scholar 

  • Fang W, Wang Y, Xu Y (2004) An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J Sci Comput 20(2):277–302

    MathSciNet  MATH  Google Scholar 

  • Fasshauer GE (2005) Meshfree methods. In: Rieth M, Schommers W (eds) Handbook of theoretical and computational nanotechnology, vol 27. American Scientific Publishers, Valencia

  • Fasshauer GE, Zhang JG (2007) On choosing “optimal’’ shape parameters for RBF approximation. Numer Algorithm 45(1–4):345–368

    MathSciNet  MATH  Google Scholar 

  • Feng WZ, Yang K, Cui M, Gao XW (2016) Analytically-integrated radial integration BEM for solving three-dimensional transient heat conduction problems. Int Commun Heat Mass Transf 79:21–30

    Google Scholar 

  • Foryś U, Poleszczuk J (2011) A delay-differential equation model of HIV related cancer-immune system dynamics. Math Biosci Eng 8(2):627

    MathSciNet  MATH  Google Scholar 

  • Franke R (1982) Scattered data interpolation: tests of some methods. Math Comput 38(157):181–200

    MathSciNet  MATH  Google Scholar 

  • Fu ZJ, Chen W, Yang H (2013) Boundary particle method for Laplace transformed time fractional diffusion equations. J Comput Phys 235:52–66

    MathSciNet  MATH  Google Scholar 

  • Fu ZJ, Chen W, Ling L (2015) Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng Anal Bound Elem 57:37–46

    MathSciNet  MATH  Google Scholar 

  • Gao XW, Zhang Ch, Guo L (2007) Boundary-only element solutions of 2D and 3D nonlinear and nonhomogeneous elastic problems. Eng Anal Bound Elem 31:974–982

    MATH  Google Scholar 

  • Ghomanjani F (2021) A new approach for Volterra functional integral equations with non-vanishing delays and fractional Bagley-Torvik equation. Proyecciones 40(4):885–903

    MathSciNet  MATH  Google Scholar 

  • Gokmen E, Yuksel G, Sezer M (2017) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. J Comput Appl Math 311:354–363

    MathSciNet  MATH  Google Scholar 

  • Guo J, Jung J (2017a) Radial basis function ENO and WENO finite difference methods based on the optimization of shape parameters. J Sci Comput 70(2):551–575

    MathSciNet  MATH  Google Scholar 

  • Guo J, Jung J (2017b) A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method. Appl Numer Math 112:27–50

    MathSciNet  MATH  Google Scholar 

  • Kaneko H, Xu Y (1994) Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math Comput 62(206):739–753

    MathSciNet  MATH  Google Scholar 

  • Khasi M, Ghoreishi F, Hadizadeh M (2014) Numerical analysis of a high order method for state-dependent delay integral equations. Numer Algorithms 66(1):177–201

    MathSciNet  MATH  Google Scholar 

  • Li X (2011) Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl Numer Math 61(12):1237–1256

    MathSciNet  MATH  Google Scholar 

  • Li X, Zhu J (2009a) A Galerkin boundary node method for biharmonic problems. Eng Anal Bound Elem 33(6):858–865

    MathSciNet  MATH  Google Scholar 

  • Li X, Zhu J (2009b) A meshless Galerkin method for stokes problems using boundary integral equations. Comput Method Appl Mech Eng 61:2874–2885

    MathSciNet  MATH  Google Scholar 

  • Meinguet J (1979) Multivariate interpolation at arbitrary points made simple. Z Angew Math Phys 30(2):292–304

    MathSciNet  MATH  Google Scholar 

  • Mosleh M, Otadi M (2015) Least squares approximation method for the solution of Hammerstein-Volterra delay integral equations. Appl Math Comput 258:105–110

    MathSciNet  MATH  Google Scholar 

  • Narcowich FJ, Sivakumar N, Ward JD (1994) On condition numbers associated with radial-function interpolation. J Math Anal Appl 186(2):457–485

    MathSciNet  MATH  Google Scholar 

  • Nemati S, Lima PM, Ordokhani Y (2013) Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials. J Comput Appl Math 242:53–69

    MathSciNet  MATH  Google Scholar 

  • Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. Appl Math Comput 218(9):5292–5309

    MathSciNet  MATH  Google Scholar 

  • Piper L, Lay-Ekuakille A, Vergallo A, Pelillo V (2012) A novel pseudo-stationary modeling of pollutant measurement prediction from industrial emissions. In: 20th IMEKO World Congress 2012, Busan, South Korea, 9 September 2012–14 September 2012, vol 2, pp 1047–1051

  • Rahimkhani P, Ordokhani Y (2020) Numerical solution of Volterra-Hammerstein delay integral equations. Iran J Sci Technol A 44(2):445–457

    MathSciNet  MATH  Google Scholar 

  • Sekar R, Murugesan K (2017) Numerical solutions of delay Volterra integral equations using single-term Walsh series approach. Int J Appl Comput Sci Math 3(3):2409–2421

    MathSciNet  MATH  Google Scholar 

  • Shawagfeh N, Arqub OA, Momani S (2014) Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. J Comput Anal Appl 16(4):750–762

    MathSciNet  MATH  Google Scholar 

  • Swick KE (1976) A model of single species population growth. SIAM J Math Anal 7(4):565–576

    MathSciNet  MATH  Google Scholar 

  • Turk G, O’brien JF (2002) Modelling with implicit surfaces that interpolate. ACM Trans Graph 21(4):855–873

    Google Scholar 

  • Villasana M, Radunskaya A (2003) A delay differential equation model for tumor growth. J Math Biol 47(3):270–294

    MathSciNet  MATH  Google Scholar 

  • Wahba G (1979) Convergence rates of “thin plate” smoothing splines when the data are noisy. In: Gasser T, Rosenblatt M (eds) Smoothing techniques for curve estimation. Lecture notes in mathematics, vol 757. Springer, Berlin, Heidelberg

  • Weiss R (1974) On the approximation of fixed points of nonlinear compact operators. SIAM J Numer Anal 11(550–553):1974

    Google Scholar 

  • Wendland H (2005) Scattered data approximation. Cambridge University Press, New York

    MATH  Google Scholar 

  • Zheng W, Chen Y (2022) A spectral method for a weakly singular Volterra integro-differential equation with pantograph delay. Acta Math Sci 42(1):387–402

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for their valuable comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Assari.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Donatella Occorsio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinian, A., Assari, P. & Dehghan, M. The numerical solution of nonlinear delay Volterra integral equations using the thin plate spline collocation method with error analysis. Comp. Appl. Math. 42, 83 (2023). https://doi.org/10.1007/s40314-023-02219-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02219-8

Keywords

Mathematics Subject Classification

Navigation