Skip to main content
Log in

On robust Karush–Kuhn–Tucker multipliers rules for semi-infinite multiobjective optimization with data uncertainty

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we establish robust optimality conditions for weakly efficient and properly positive efficient solutions of a semi-infinite multiobjective optimization with data uncertainty in both of the objective and constraints functions. Our conditions are form of the robust Karush–Kuhn–Tucker multipliers rules. To this aim, a basic and Pshenichnyi–Levin–Valadire constraint qualifications are proposed. Sufficient optimality conditions for these robust efficient solutions are also derived under the generalized convex assumptions. Furthermore, we also prove that the basic constraint qualification ensuring the boundedness of these robust multipliers sets. Some examples are provided to illustrate the presented results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anitescu M (2000) Degenerate nonlinear programming with a quadratic growth condition. SIAM J Optim 10:1116–1135

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2008) Selected topics in robust convex optimization. Math Program (Ser B) 112:125–158

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Bertsimas D, Brown DB (2009) Constructing uncertainty sets for robust linear optimization. Oper Res Lett 57:1483–1495

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53:464–501

    Article  MathSciNet  MATH  Google Scholar 

  • Birge JR, Wets R (1991) Stochastic programming I, II. J.C. Baltzer AG, Amsterdam

    Google Scholar 

  • Bonnans JF, Shapiro A (2000) Perturbation analysis of optimization problems. Springer, New York

    Book  MATH  Google Scholar 

  • Chen J, Köbis E, Yao JC (2019) Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints. J Optim Theory Appl 181:411–436

    Article  MathSciNet  MATH  Google Scholar 

  • Chuong TD (2016) Optimality and duality for robust multiobjective optimization problems. Nonlinear Anal 134:127–143

    Article  MathSciNet  MATH  Google Scholar 

  • Chuong TD (2020) Robust optimality and duality in multiobjective optimization problems under data uncertainty. SIAM J Optim 30:1501–1526

    Article  MathSciNet  MATH  Google Scholar 

  • Clarke FH (1983) Optimization and nonsmooth analysis. Wiley, New York

    MATH  Google Scholar 

  • Durea M, Dutta J, Tammer C (2008) Bounded sets of Lagrange multipliers for vector optimization problems in infinite dimension. J Math Anal Appl 348:589–606

    Article  MathSciNet  MATH  Google Scholar 

  • Dutta J, Lalitha CS (2006) Bounded sets of KKT multipliers in vector optimization. J Global Optim 36:425–437

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrgott M, Ide J, Schobel A (2014) Minmax robustness for multi-objective optimization problems. Eur J Oper Res 239:17–31

    Article  MathSciNet  MATH  Google Scholar 

  • Gauvin J (1977) A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming. Math Program 12:136–138

    Article  MathSciNet  MATH  Google Scholar 

  • Goberna MA, Jeyakumar V, Li G, Lopez MA (2013) Robust linear semi-infinite programming duality under uncertainty. Math Program (Ser B) 139:185–203

    Article  MathSciNet  MATH  Google Scholar 

  • Goberna MA, Jeyakumar V, Li G, Vicente-Perez J (2015) Robust solutions to multi-objective linear programs with uncertain data. Eur J Oper Res 242:730–743

    Article  MathSciNet  MATH  Google Scholar 

  • Goberna MA, Jeyakumar V, Li G, Vicente-Perez J (2018) Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs. Eur J Oper Res 270:40–50

    Article  MathSciNet  MATH  Google Scholar 

  • Hiriart-Urruty JB, Lemarechal C (1991) Convex analysis and minimization algorithms. Springer, Berlin

    MATH  Google Scholar 

  • Ide J, Schobel A (2016) Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR Spectr 38:235–271

    Article  MathSciNet  MATH  Google Scholar 

  • Jeyakumar V, Li G (2010) Strong duality in robust convex programming: complete characterizations. SIAM J Optim 20:3384–3407

    Article  MathSciNet  MATH  Google Scholar 

  • Jeyakumar V, Li G, Lee GM (2012) Robust duality for generalized convex programming problems under data uncertainty. Nonlinear Anal 75:1362–1373

    Article  MathSciNet  MATH  Google Scholar 

  • Kuroiwa D, Lee GM (2012) On robust multiobjective optimization. Vietnam J Math 40:305–317

    MathSciNet  MATH  Google Scholar 

  • Kuroiwa D, Lee GM (2014) On robust convex multiobjective optimization. J. Nonlinear Convex Anal 15:1125–1136

    MathSciNet  MATH  Google Scholar 

  • Lee JH, Lee GM (2018) On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems. Ann Oper Res 269:419–438

    Article  MathSciNet  MATH  Google Scholar 

  • Lee GM, Son PT (2014) On nonsmooth optimality theorems for robust optimization problems. Bull Korean Math Soc 51:287–301

    Article  MathSciNet  MATH  Google Scholar 

  • Mordukhovich BS, Nam MN (2014) An easy path to convex analysis and applications. Morgan & Claypool, Williston, p 2014

    Book  MATH  Google Scholar 

  • Pourkarimi L, Soleimani-damaneh M (2016) Robustness in deterministic multi-objective linear programming with respect to the relative interior and angle deviation. Optimization 65:1983–2005

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Rockafellar RT, Wets JB (1998) Variational Analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Tung NM, Duy MV (2002) Constraint qualifications and optimality conditions for robust nonsmooth semi-infinite multiobjective optimization problems. 4OR (to appear)

  • Wets JB (1989) Stochastic programming. Optimization. In: Nemhauser GL, Rinnooy AHG, Todd MJ (eds) Handbooks of operations research and management science, vol 1. North-Holland, Amsterdam, pp 573–629

    Google Scholar 

  • Zamani M, Soleimani-damaneh M, Kabgani A (2015) Robustness in nonsmooth nonlinear multi-objective programming. Eur J Oper Res 247:370–378

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wish to thank the Editors and the referee for their helpful comments and suggestions that helped us significantly improve the paper. This work was supported by the National Foundation for Science and Technology Development (NAFOSTED) of Vietnam under grant no. 101.01-2021.13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Minh Tung.

Additional information

Communicated by Gabriel Haeser.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tung, N.M. On robust Karush–Kuhn–Tucker multipliers rules for semi-infinite multiobjective optimization with data uncertainty. Comp. Appl. Math. 42, 98 (2023). https://doi.org/10.1007/s40314-023-02224-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02224-x

Keywords

Mathematics Subject Classification

Navigation