Skip to main content
Log in

Invariant subspaces and exact solutions: \((1+1)\) and \((2+1)\)-dimensional generalized time-fractional thin-film equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We investigate the applicability and efficiency of the invariant subspace method to (2 + 1)-dimensional time-fractional nonlinear PDEs. We show how to find various types of invariant subspaces and reductions for the (1 + 1) and (2 + 1)-dimensional generalized nonlinear time-fractional thin-film equations which arise from the motion of liquid film on a solid surface under the influence of surface tension. We construct several kinds of exact solutions for the above-mentioned equations depending on arbitrary functions as either a combination of trigonometric, polynomial, Mittag–Leffler, and exponential type functions or any of these forms. Also, we demonstrate the applicability of the invariant subspace method to solve the initial and boundary value problem of nonlinear time-fractional PDEs for the first time and illustrate it through the physically important generalized time-fractional thin-film and linear time-fractional heat equations. Finally, we present some of the obtained exact solutions graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data is available.

References

  • Abdel Kader AH, Abdel Latif MS, Baleanu D (2021) Some exact solutions of a variable coefficients fractional biological population model. Math Methods Appl Sci 44(6):4701–4714

    MathSciNet  MATH  Google Scholar 

  • Alhussain ZA, Tassaddiq A (2022) Thin film blood based Casson hybrid nanofluid flow with variable viscosity. Arab J Sci Eng 47(1):1087–1094

    Google Scholar 

  • Ali R, Shahzad A, Saher K, Elahi Z, Abbas T (2022) The thin film flow of \(Al_2O_3\) nanofluid particle over an unsteady stretching surface. Case Stud Therm Eng 29:101695

    Google Scholar 

  • Artale Harris P, Garra R (2013) Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method. Nonlinear Stud 20(4):471–481

    MathSciNet  MATH  Google Scholar 

  • Artale Harris P, Garra R (2017) Nonlinear heat conduction equations with memory: physical meaning and analytical results. J Math Phys 58:063501

    MathSciNet  MATH  Google Scholar 

  • Bakkyaraj T (2020) Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative. Eur Phys J Plus 135:126

    Google Scholar 

  • Bakkyaraj T, Sahadevan R (2015) Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative. Nonlinear Dyn 80:447–455

    MathSciNet  MATH  Google Scholar 

  • Bakkyaraj T, Thomas R (2022) Lie symmetry analysis and exact solution of \((2+ 1)\)-dimensional nonlinear time-fractional differential-difference equations. Pramana J Phys 96:225

    Google Scholar 

  • Bernis F, Josephus H, John RK (2000) Dipoles and similarity solutions of the thin-film equation in the half-line. Nonlinearity 13:413–439

    MathSciNet  MATH  Google Scholar 

  • Bertozzi AL (1998) The mathematics of moving contact lines in thin liquid films. N Am Math Soc 45(6):689–697

    MathSciNet  MATH  Google Scholar 

  • Bertozzi AL, Bowen M (2002) Thin film dynamics: theory and applications. Modern methods in scientific computing and applications. Nato Sci Ser 75:31–79

    MATH  Google Scholar 

  • Choudhary S, Daftardar-Gejji V (2019) Solving systems of multi-term fractional PDEs: invariant subspace approach. Int J Model Simul Sci Comput 10(01):1941010

    Google Scholar 

  • Choudhary S, Prakash P, Daftardar-Gejji V (2019) Invariant subspaces and exact solutions for a system of fractional PDEs in higher dimensions. Comput Appl Math 38:126

    MathSciNet  MATH  Google Scholar 

  • Chu YM, Inc M, Hashemi MS, Eshaghi S (2022) Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces. Comput Appl Math 41:271

    MathSciNet  MATH  Google Scholar 

  • Chun-Rong Z, Chang-Zheng Q (2009) Classification and reduction of generalized thin-film equations. Commun Theor Phys 52(3):403–410

    MathSciNet  MATH  Google Scholar 

  • Dal Passo R, Giacomelli L, Shishkov A (2001) The thin film equation with nonlinear diffusion equation. Commun Partial Differ Equ 26(9):1509–1557

    MathSciNet  MATH  Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations. Springer, Berlin

    MATH  Google Scholar 

  • Feng W, Zhao S (2018) Time-fractional inhomogeneous nonlinear diffusion equation: symmetries, conservation laws, invariant subspaces, and exact solutions. Mod Phys Lett B 32:1850401

    MathSciNet  Google Scholar 

  • Galaktionov VA, Svirshchevskii SR (2007) Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Garra R, Tomovski Z (2021) Exact results on some nonlinear Laguerre-type diffusion equations. Math Model Anal 26(1):72–81

    MathSciNet  MATH  Google Scholar 

  • Gazizov RK, Kasatkin AA (2013) Construction of exact solutions for fractional order differential equations by invariant subspace method. Comput Math Appl 66(5):576–584

    MathSciNet  MATH  Google Scholar 

  • Gazizov RK, Kasatkin AA, Lukashchuk SY (2009) Symmetry properties of fractional diffusion equations. Phys Scr 2009(T136):014016

    Google Scholar 

  • Giacomelli L, Otto F (2003) Rigorous lubrication approximation. Interfaces Free Bound 5(4):483–529

    MathSciNet  MATH  Google Scholar 

  • Gnann MV, Petrache M (2018) The Navier-slip thin-film equation for 3D fluid films: existence and uniqueness. J Differ Equ 265(11):5832–5958

    MathSciNet  MATH  Google Scholar 

  • Howell PD (2003) Surface-tension-driven flow on a moving curved surface. J Eng Math 45:283–308

    MathSciNet  MATH  Google Scholar 

  • Jensen OE (1997) The thin liquid lining of a weakly curved cylindrical tube. J Fluid Mech 331:373–403

    MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Langlands TAM, Henry BI (2008) Anomalous subdiffusion with multispecies linear reaction dynamics. Phys Rev E 77:021111

    MathSciNet  Google Scholar 

  • Lienstromberg C, Muller S (2020) Local strong solutions to a quasilinear degenerate fourth-order thin-film equation. Nonlinear Differ Equ Appl 27:16

    MathSciNet  MATH  Google Scholar 

  • Liu H (2018) Invariant subspace classification and exact solutions to the generalized nonlinear D-C equation. Appl Math Lett 83:164–168

    MathSciNet  MATH  Google Scholar 

  • Ma WX (2012) A refined invariant subspace method and applications to evolution equations. Sci Chin Math 55:1769–1778

    MathSciNet  MATH  Google Scholar 

  • Ma WX, Liu Y (2012) Invariant subspaces and exact solutions of a class of dispersive evolution equations. Commun. Nonlinear Sci. Numer. Simulat. 17:3795–3801

    MathSciNet  MATH  Google Scholar 

  • Ma WX, Zhang Y, Tang Y, Tu J (2012) Hirota bilinear equations with linear subspaces of solutions. Appl Math Comput 218(13):7174–7183

    MathSciNet  MATH  Google Scholar 

  • Ma WX, Mousa MM, Ali MR (2020) Application of a new hybrid method for solving singular fractional Lane–Emden-type equations in astrophysics. Mod Phys Lett B 34(3):2050049

    MathSciNet  Google Scholar 

  • Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    MathSciNet  MATH  Google Scholar 

  • Myint UT, Debnath L (2007) Linear partial differential equations for scientists and engineers. Springer, New York

    MATH  Google Scholar 

  • Nass AM (2019) Lie symmetry analysis and exact solutions of fractional ordinary differential equations with neutral delay. Appl Math Comput 347:370–380

    MathSciNet  MATH  Google Scholar 

  • Nikan O, Avazzadeh Z, Machado JT (2022) Numerical treatment of microscale heat transfer processes arising in thin films of metals. Int Commun Heat Mass Transf 132:105892

    Google Scholar 

  • Obrien SBG, Schwartz LW (2002) Theory and modeling of thin-film flows. Encycl Surf Colloid Sci 1:5283–5297

    Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Polyanin AD, Zhurov AI (2021) Separation of variables and exact solutions to nonlinear PDEs. Chapman and Hall/CRC, New York

    MATH  Google Scholar 

  • Povstenko YZ (2011) Fractional Cattaneo-type equations and generalized thermoelasticity. J Therm Stresses 34(2):97–114

    Google Scholar 

  • Prakash P (2019) New exact solutions of generalized convection–reaction–diffusion equation. Eur Phys J Plus 134:261

    Google Scholar 

  • Prakash P (2020) Invariant subspaces and exact solutions for some types of scalar and coupled time-space fractional diffusion equations. Pramana J Phys 94:103

    Google Scholar 

  • Prakash P (2021) On group analysis, conservation laws and exact solutions of time-fractional Kudryashov-Sinelshchikov equation. Comput Appl Math 40:162

    MathSciNet  MATH  Google Scholar 

  • Prakash P, Choudhary S, Daftardar-Gejji V (2020) Exact solutions of generalized nonlinear time-fractional reaction-diffusion equations with time delay. Eur. Phys. J. Plus 135:490

    Google Scholar 

  • Prakash P, Priyendhu KS, Anjitha KM (2022) Initial value problem for the (2 + 1)-dimensional time-fractional generalized convection-reaction-diffusion wave equation: invariant subspaces and exact solutions. Comput Appl Math 41:30

    MathSciNet  MATH  Google Scholar 

  • Prakash P, Priyendhu KS, Lakshmanan M (2022) Invariant subspace method for (m+ 1)-dimensional non-linear time-fractional partial differential equations. Commun Nonlinear Sci Numer Simul 111:106436

    MathSciNet  MATH  Google Scholar 

  • Qin F, Feng W, Zhao S (2022) Lie symmetry group, invariant subspace, and conservation law for the time-fractional derivative nonlinear Schrödinger equation. Mathematics 10(13):2170

    Google Scholar 

  • Qu C (2006) Symmetries and solutions to the thin film equations. J Math Anal Appl 317:381–397

    MathSciNet  MATH  Google Scholar 

  • Recio E, Garrido TM, de la Rosa R, Bruzon MS (2019) Conservation laws and Lie symmetries a (2 + 1)-dimensional thin-film equation. J Math Chem 57:1243–1251

    MathSciNet  MATH  Google Scholar 

  • Rui W (2018) Idea of invariant subspace combined with an elementary integral method for investigating exact solutions of time-fractional NPDEs. Appl Math Comput 339:158–171

    MathSciNet  MATH  Google Scholar 

  • Rui W, Yang X, Chen F (2022) Method of variable separation for investigating exact solutions and dynamical properties of the time-fractional Fokker-Planck equation. Phys A 595:127068

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Bakkyaraj T (2012) Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations. J Math Anal Appl 393(2):341–347

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Bakkyaraj T (2015) Invariant subspace method and exact solutions of certain nonlinear time-fractional partial differential equations, Fract. Calc. Appl Anal 18:146–162

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Prakash P (2016) Exact solution of certain time-fractional nonlinear partial differential equations. Nonlinear Dyn 85:659–673

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Prakash P (2017) Exact solutions and the maximal dimension of invariant subspaces of time-fractional coupled nonlinear partial differential equations. Commun Nonlinear Sci Numer Simul 42:158–177

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Prakash P (2017) On Lie symmetry analysis and invariant subspace methods of coupled time-fractional partial differential equations. Chaos Solit Fract 104:107–120

    MathSciNet  MATH  Google Scholar 

  • Segatti A, Vázquez JL (2020) On a fractional thin film equation. Adv Nonlinear Anal 9:1516–1558

    MathSciNet  MATH  Google Scholar 

  • Sun HG, Chen W, Sze KY (2013) A semi-discrete finite element method for a class of time-fractional diffusion equations. Philos Trans R Soc A 371:20120268

    MathSciNet  MATH  Google Scholar 

  • Tarasov VE (2011) Fractional dynamics: applications of fractional calculus to dynamics of particles, fields, and media. Springer, Heidelberg

    Google Scholar 

  • Tarasov VE (2013) Review of some promising fractional physical models. Int J Mod Phys B 27(09):1330005

    MathSciNet  MATH  Google Scholar 

  • Thomas R (2021) Fractional Vasicek model in financial mathematics. In: 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES), 1–6. https://doi.org/10.1109/TRIBES52498.2021.9751629

  • Ye Y, Ma WX, Shen S, Zhang D (2014) A class of third-order nonlinear evolution equations admitting invariant subspaces and associated reductions. J Nonlinear Math Phys 21(1):132–148

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bakkyaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Corina Giurgea.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, P., Thomas, R. & Bakkyaraj, T. Invariant subspaces and exact solutions: \((1+1)\) and \((2+1)\)-dimensional generalized time-fractional thin-film equations. Comp. Appl. Math. 42, 97 (2023). https://doi.org/10.1007/s40314-023-02229-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02229-6

Keywords

Mathematics Subject Classification

Navigation