Skip to main content
Log in

Study the genetic variation using Eta functions

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper studies the genetic variation within species using the Eta base functions. We consider the House of Cards Kingman’s model to study genetic variation. This model analyzes the balance between mutation and selection within species, while other forces that produce and maintain genetic variation cause only perturbations. Since this model is a nonlinear integral equation, we introduce a new numerical method for solving the nonlinear mixed Volterra–Fredholm integral equations. We find the best approximation of unknown functions to solve the integral equation using the Eta functions and collocation method. We derive the error bounds of the numerical method and solve some numerical examples to show the high accuracy of the new numerical technique. Using this numerical method, we study the behavior of the probability density of genes within species by considering three different cases of fitnesses for individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul-Majid W (2011) Linear and nonlinear integral equations, vol 639. Springer

  • Amin R, Shah K, Asif M, Khan I (2020) Efficient numerical technique for solution of delay volterra–fredholm integral equations using haar wavelet. Heliyon 6(10):e05108

    Article  Google Scholar 

  • Anatoliĭ K (2006) Theory and applications of fractional differential equations

  • Bateman Harry (1953) Higher transcendental functions [volumes i–iii], vol 1. McGraw-Hill Book Company

  • Binh NT, Van Ninh K (2019) Parameter continuation method for solving nonlinear fredholm integral equations of the second kind. Bull Malaysian Math Sci Soc 42(6):3379–3407

    Article  MathSciNet  MATH  Google Scholar 

  • Bürger Reinhard (2000) The mathematical theory of selection, recombination, and mutation. John Wiley & Sons

  • Bürger R (1986) On the maintenance of genetic variation: global analysis of kimura’s continuum-of-alleles model. J Math Biol 24(3):341–351

    Article  MathSciNet  MATH  Google Scholar 

  • Bürger R (1989) Mutation-selection balance and continuum-of-alleles models. Math Comput Modell 12(9):1181

    Article  Google Scholar 

  • Bürger R (1998) Mathematical properties of mutation-selection models. Genetica 102:279–298

    Article  Google Scholar 

  • Cardone A, Ixaru LG, Paternoster B (2010) Exponential fitting direct quadrature methods for volterra integral equations. Numer Algorithms 55(4):467–480

    Article  MathSciNet  MATH  Google Scholar 

  • Coleman JP, Ixaru LG (2006) Truncation errors in exponential fitting for oscillatory problems. SIAM J Numer Anal 44(4):1441–1465

    Article  MathSciNet  MATH  Google Scholar 

  • Conte D, Esposito E, Paternoster B, Ixaru LG (2010) Some new uses of the \(\eta \)m (z) functions. Comput Phys Commun 181(1):128–137

    Article  MathSciNet  MATH  Google Scholar 

  • Frank Charles KJ (1980) Mathematics of genetic diversity. SIAM

  • Giacomo TF (1985) Integral equations, vol 5. Courier corporation

  • Gr IL (1984) Numerical methods for differential equations and applications

  • Griffiths JF, Griffiths AJF, Wessler SR, Lewontin RC, Gelbart WM, Suzuki DT, Miller JH et al (2005) An introduction to genetic analysis. Macmillan

  • Guanrong C, Mingjun, C Zhongying C (1997) Approximate solutions of operator equations, vol 9. World Sci

  • Ixaru LG, Vanden Berghe G (2004) Exponential fitting, vol 568. Springer Science & Business Media

  • Ixaru L Gr (1997) Operations on oscillatory functions. Comput Phys Commun 105(1):1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Ixaru LG (2002) Lilix-a package for the solution of the coupled channel schrödinger equation. Comput Phys Commun 147(3):834–852

    Article  MATH  Google Scholar 

  • James K (2018) Mathematical physics with partial differential equations. Academic Press

  • John W (2009) Coalescent theory: an introduction. Number 575: 519.2 WAK

  • Kim KJ, Cools R, Ixaru LG (2002) Quadrature rules using first derivatives for oscillatory integrands. J Comput Appl Math 140(1–2):479–497

    Article  MathSciNet  MATH  Google Scholar 

  • Kim KJ, Cools R, Ixaru LG (2003) Extended quadrature rules for oscillatory integrands. Appl Numer Math 46(1):59–73

    Article  MathSciNet  MATH  Google Scholar 

  • Kingman JFC (1978) A simple model for the balance between selection and mutation. J Appl Prob 15(1):1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Mashayekhi S, Ixaru LG (2020) The least-squares fit of highly oscillatory functions using eta-based functions. J Comput Appl Math 376:112839

    Article  MathSciNet  MATH  Google Scholar 

  • Mashayekhi S, Sedaghat S (2021) Fractional model of stem cell population dynamics. Chaos Solitons Fractals 146:110919

    Article  MathSciNet  Google Scholar 

  • Neil ES, David S, Kenneth WW (2013) A mutation-selection model with recombination for general genotypes, vol. 222. Am Math Soc

  • Shijun L (2003) Beyond perturbation: introduction to the homotopy analysis method. CRC Press

  • Smith Francis J (1965) Quadrature methods based on the euler-maclaurin formula and on the clenshaw-curtis method of integration. Numer Math 7(5):406–411

    Article  MathSciNet  MATH  Google Scholar 

  • Steinsaltz D, Evans SN, Wachter KW (2005) A generalized model of mutation-selection balance with applications to aging. Adv Appl Math 35(1):16–33

    Article  MathSciNet  MATH  Google Scholar 

  • Xiaoyan L, Jin X, Zhi L, Jiahuan H (2020) The cardinal spline methods for the numerical solution of nonlinear integral equations. J Chem 2020

  • Yuan Linglong (2017) A generalization of kingman’s model of selection and mutation and the lenski experiment. Math Biosci 285:61–67

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan L (2020) Kingman’s model with random mutation probabilities: convergence and condensation ii. J Stat Phys 181(3):870–896

    Article  MathSciNet  MATH  Google Scholar 

  • Ziari Shokrollah, Bica Alexandru Mihai (2019) An iterative numerical method to solve nonlinear fuzzy volterra-hammerstein integral equations. J Intell Fuzzy Syst 37(5):6717–6729

    Article  Google Scholar 

Download references

Acknowledgements

Somayeh Mashayekhi was supported by the National Science Foundation grant DBI 2109990. Salameh Sedaghat thanks CIMPA-ICTP Research in Paris Fellowships program. We thank two anonymous referees for giving us many suggestions that helped us to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mashayekhi.

Additional information

Communicated by Hui Liang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashayekhi, S., Sedaghat, S. Study the genetic variation using Eta functions. Comp. Appl. Math. 42, 95 (2023). https://doi.org/10.1007/s40314-023-02242-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02242-9

Keywords

Mathematics Subject Classification

Navigation