Skip to main content
Log in

Fast \(\theta \)-Maruyama scheme for stochastic Volterra integral equations of convolution type: mean-square stability and strong convergence analysis

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a fast \(\theta \)-Maruyama method is proposed for solving stochastic Volterra integral equations of convolution type with singular and Hölder continuous kernels based on the sum-of-exponentials approximation. Furthermore, the average storage O(N) and the calculation cost \(O(N^2)\) of \(\theta \)-Maruyama scheme are reduced to \(O(\log N)\) and \(O(N\log N)\) for \(T\gg 1\) or \(O(\log ^2 N)\) and \(O(N\log ^2 N)\) for \(T\approx 1\), respectively, which implies that the fast \(\theta \)-Maruyama scheme is confirmed to improve the computational efficiency of the \(\theta \)-Maruyama method. Under the local Lipschitz and linear growth conditions, strong convergence of the given numerical scheme are obtained. Then, for the linear test equation, we show the asymptotic behavior of solutions in mean square sense. Further, we obtain the explicit structure of the stability matrices and some numerical results of the mean-square stability for the fast \(\theta \)-Maruyama method applied to the linear test equation. Finally, some numerical experiments are also given to illustrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anh P, Doan T, Huong P (2019) A variation of constant formula for Caputo fractional stochastic differential equations. Stat Probabil Lett 145:351–358

    MathSciNet  MATH  Google Scholar 

  • Baffet D (2019) A Gauss-Jacobi kernel compression scheme for fractional differential equations. J Sci Comput 79(1):227–248

    MathSciNet  MATH  Google Scholar 

  • Baffet D, Hesthaven J (2017) A kernel compression scheme for fractional differential equations. SIAM J Numer Anal 55(2):496–520

    MathSciNet  MATH  Google Scholar 

  • Beylkin G, Monzon L (2005) On approximation of functions by exponential sums. Appl Comput Harmon Anal 19(1):17–48

    MathSciNet  MATH  Google Scholar 

  • Beylkin G, Monzon L (2010) Approximation by exponential sums revisited. Appl Comput Harmon Anal 28(2):131–149

    MathSciNet  MATH  Google Scholar 

  • Buckwar E, Sickenberger T (2012) A structural analysis of asymptotic mean-square stability for multi-dimensional linear stochastic differential systems. Appl Numer Math 62(7):842–859

    MathSciNet  MATH  Google Scholar 

  • Burns J, Cliff E, Herdman T (1983) A state-space model for an aeroelastic system. The 22nd IEEE Conference on Decision and Control 1074–1077 https://doi.org/10.1109/CDC.1983.269685

  • Capobianco G, Conte D, Prete I et al (2007) Fast Runge-Kutta methods for nonlinear convolution systems of Volterra integral equations. BIT Numer Math 47(2):259–275

    MathSciNet  MATH  Google Scholar 

  • Chambre P (1959) Nonlinear heat transfer problem. J Comput Phys 30(11):1683–1688

    MathSciNet  MATH  Google Scholar 

  • Chevillard L (2017) Regularized fractional Ornstein-Uhlenbeck processes and their relevance to the modeling of fluid turbulence. Phys Rev E 96(3):033–111

    MathSciNet  Google Scholar 

  • Christensen RM (1980) A nonlinear theory of viscoelasticity for application to elastomers. J Appl Mech 47(4):762–768

    MathSciNet  MATH  Google Scholar 

  • Cong N, Doan T, Tuan H (2018) Asymptotic stability of linear fractional systems with constant coefficients and small time-dependent perturbations. Vietnam J Math 46:665–680

    MathSciNet  MATH  Google Scholar 

  • Conte D, Prete I (2006) Fast collocation methods for Volterra integral equations of convolution type. J Comput Appl Math 196(2):652–663

    MathSciNet  MATH  Google Scholar 

  • Conte D, D’Ambrosio R, Paternoster B (2018) On the stability of \(\theta \)-methods for stochastic Volterra integral equations. Discrete Contin Dyn Syst Ser B 23(7):2695–2708

    MathSciNet  MATH  Google Scholar 

  • Conte D, D’Ambrosio R, Paternoster B (2021) Improved \(\theta \)-methods for stochastic Volterra integral equations. Commun Nonlinear Sci Numer Simul 93:105528

    MathSciNet  MATH  Google Scholar 

  • Dai X, Xiao A (2020) Lévy-driven stochastic Volterra integral equations with doubly singular kernels: existence, uniqueness, and a fast EM method. Adv Comput Math 46(2):803–845

    MATH  Google Scholar 

  • Dai X, Xiao A, Bu W (2022) Stochastic fractional integro-differential equations with weakly singular kernels: Well-posedness and Euler-Maruyama approximation. Discrete Contin Dyn Syst Ser B 27(8):4231–4253

    MathSciNet  MATH  Google Scholar 

  • Doan TS, Huong PT, Kloeden PE et al (2020) Euler-Maruyama scheme for Caputo stochastic fractional differential equations. J Comput Appl Math 380:112989

    MathSciNet  MATH  Google Scholar 

  • Euch OE, Rosenbaum M (2019) The characteristic function of rough Heston models. Math Finance 29(1):3–38

    MathSciNet  MATH  Google Scholar 

  • Fang D, Li L (2020) Numerical approximation and fast evaluation of the overdamped generalized Langevin equation with fractional noise. ESAIM Math Model Num 54(2):431–463

    MathSciNet  MATH  Google Scholar 

  • Gao J, Liang H, Ma S (2019) Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay. Appl Math Comput 348:385–398

    MathSciNet  MATH  Google Scholar 

  • Gutleb T (2021) A fast sparse spectral method for nonlinear integro-differential Volterra equations with general kernels. Adv Comput Math 47(3):47–42

    MathSciNet  MATH  Google Scholar 

  • Hairer E, Lubich C, Schlichte M (1985) Fast Numerical solution of nonlinear Volterra convolution equations. SIAM J Sci Stat Comput 6(3):532–541

    MathSciNet  MATH  Google Scholar 

  • Hanyga A (2007) Fractional-order relaxation laws in non-linear viscoelasticity. Contin Mech Thermodyn 19:25–36

    MathSciNet  MATH  Google Scholar 

  • Higham D, Mao X, Stuart A (2002) Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J Numer Anal 40:1041–1063

    MathSciNet  MATH  Google Scholar 

  • Jaber EA, Euch OE (2019) Multifactor approximation of rough volatility models. SIAM J Financial Math 10(2):309–349

    MathSciNet  MATH  Google Scholar 

  • Jiang S, Greengard L, Wang S (2015) Efficient sum-of-exponentials approximations for the heat kernel and their applications. Adv Comput Math 41(3):529–551

    MathSciNet  MATH  Google Scholar 

  • Jiang S, Zhang J, Zhang Q et al (2017) Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun Comput Phys 21(3):650–678

    MathSciNet  MATH  Google Scholar 

  • Khalaf A, Abouagwa M, Mustafa A et al (2021) Stochastic Volterra integral equations with jumps and the strong superconvergence of the Euler-Maruyama approximation. J Comput Appl Math 382:113071

    MathSciNet  MATH  Google Scholar 

  • Lan G, Wang Q (2019) Strong convergence rates of modified truncated EM methods for neutral stochastic differential delay equations. J Comput Appl Math 362:83–98

    MathSciNet  MATH  Google Scholar 

  • Lan G, Xia F (2018) Strong convergence rates of modified truncated EM method for stochastic differential equations. J Comput Appl Math 334:1–17

    MathSciNet  MATH  Google Scholar 

  • Li J (2010) A fast time stepping method for evaluating fractional integrals. SIAM J Sci Comput 31(6):4696–4714

    MathSciNet  MATH  Google Scholar 

  • Li K, Peng J (2011) Laplace transform and fractional differential equations. Appl Math Lett 24(12):2019–2023

    MathSciNet  MATH  Google Scholar 

  • Li M, Huang C, Hu P et al (2020) Mean-square stability and convergence of a split-step theta method for stochastic Volterra integral equations. J Comput Appl Math 382:113077

    MathSciNet  MATH  Google Scholar 

  • Li M, Huang C, Hu Y (2021) Numerical methods for stochastic Volterra integral equations with weakly singular kernels. IMA J Numer Anal 42(3):2656–2683

    MathSciNet  MATH  Google Scholar 

  • Liang H, Yang Z, Gao J (2017) Strong superconvergence of the Euler-Maruyama method for linear stochastic Volterra integral equations. J Comput Appl Math 317:447–457

    MathSciNet  MATH  Google Scholar 

  • Lubich C, Schadle A (2002) Fast convolution for nonreflecting boundary conditions. SIAM J Sci Comput 24(1):161–182

    MathSciNet  MATH  Google Scholar 

  • Mao X (2015) The truncated Euler-Maruyama method for stochastic differential equations. J Comput Appl Math 290:370–384

    MathSciNet  MATH  Google Scholar 

  • Mohammadi F (2015) A wavelet-based computational method for solving stochastic Ito-Volterra integral equations. J Comput Phys 298:254–265

    MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Academic Press, Inc, San Diego, CA pp 1–36

  • Qi S, Lan G (2022) Strong convergence of the Euler-Maruyama method for nonlinear stochastic Volterra integral equations with time-dependent delay. J Comput Math 40:439–454

    MathSciNet  MATH  Google Scholar 

  • Richard A, Tan X, Yang F (2021) Discrete-time simulation of stochastic volterra equations, stochastic processes and their applications. Stoch Proc Appl 141:109–138

    MATH  Google Scholar 

  • Tuan H (2017) On some special properties of Mittag-Leffler functions. https://arxivorg/abs/170802277arxiv:1708.02277

  • Tuan H (2021) On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete Contin Dyn Syst Ser B 26(3):1749–1762

    MathSciNet  MATH  Google Scholar 

  • Wang M, Dai X, Xiao A (2022) Optimal convergence rate of \(\theta \)-Maruyama method for stochastic Volterra integro-differential equations with Riemann-Liouville fractional Brownian motion. Adv Appl Math Mech 14:202–217

    MathSciNet  MATH  Google Scholar 

  • Wang S, Jiang S, Wang J (2019) Fast high-order integral equation methods for solving boundary value problems of two dimensional heat equation in complex geometry. J Sci Comput 79(2):787–808

    MathSciNet  MATH  Google Scholar 

  • Wolfersdorf L (2010) Autoconvolution equations of the third kind with power-logarithmic coefficients. Appl Anal 89(3):273–292

    MathSciNet  MATH  Google Scholar 

  • Yan Y, Sun Z, Zhang J (2017) Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun Comput Phys 22(4):1028–1048

    MathSciNet  MATH  Google Scholar 

  • Yang Z, Yang H, Yao Z (2020) Strong convergence analysis for Volterra integro-differential equations with fractional Brownian motions. J Comput Appl Math 383:113156

    MathSciNet  MATH  Google Scholar 

  • Yarvin N, Rokhlin V (1999) An improved fast multipole algorithm for potential fields on the line. SIAM J Numer Anal 36(2):629–666

    MathSciNet  MATH  Google Scholar 

  • Zhang Y, Zhuang C, Jiang S (2021) Fast one-dimensional convolution with general kernels using sum-of-exponential approximation. Commun Comput Phys 29(5):1570–1582

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments which helped us improve the paper. This research is supported by the National Natural Science Foundation of China (No. 12071403) and the Research Foundation of Education Department of Hunan Province of China (No. 21A0108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Xiao.

Additional information

Communicated by Pierre Etore.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Before going to the proof of the Theorem 4.1, we need some preparatory lemmas. First, we establish a variation of constant formula for Eq. (4.1).

Lemma 8.1

(A Variation of Constant Formula For SVIEs) For Eq. (4.1) with \(\alpha >-1\) and \(\beta >-\frac{1}{2}\), the following statement:

$$\begin{aligned} x(t)&=E_{(\alpha +1),1}(\lambda \Gamma (\alpha +1)t^{(\alpha +1)})x_0\nonumber \\&\quad +\mu \Gamma (\beta +1)\int _0^t(t-s)^{\beta } E_{(\alpha +1),(\beta +1)}(\lambda \Gamma (\alpha +1)(t-s)^{(\alpha +1)})x(s)\text{ d }B(s) \end{aligned}$$
(8.1)

holds for all \(t\in [0,T]\).

Proof

With the help of [Theorem 3.1, Li and Peng 2011] and [Theorem 2.3, Anh et al. 2019], the proof can be obtained easily. \(\square \)

To prove Theorem 4.1, we are going to give the following results about the estimates of the Mittag-Leffler function.

Lemma 8.2

Suppose that \(\lambda \ne 0\), \(-1<\alpha <1\) and \(\beta \) is a real number. There exist positive constants \(M(\alpha ,\beta )\) and \(\bar{M}(\alpha )\) depending on \(\alpha \) and \(\beta \) such that for any \(t\ge 0\), it holds that if \(\beta \ne \alpha \), then

$$\begin{aligned} |E_{(\alpha +1),(\beta +1)}(\lambda t^{\alpha +1})|\le \frac{M(\alpha ,\beta )}{|\lambda |\max \{1,t^{\alpha +1}\}}. \end{aligned}$$

Moreover, if \(\beta =\alpha \), then we can obtain

$$\begin{aligned} |E_{(\alpha +1),(\alpha +1)}(\lambda t^{\alpha +1})|\le \frac{\bar{M}(\alpha )}{\lambda ^2\max \{1,t^{2(\alpha +1)}\}}. \end{aligned}$$

Proof

See [Theorems 1.3 and 1.4, Podlubny 1999] and [Theorem 2, Cong et al. 2018] or [Lemma 2, Tuan 2017]. \(\square \)

Lemma 8.3

Suppose that

$$\begin{aligned} (\mu \Gamma (\beta +1))^2\int _0^{\infty }s^{2\beta } (E_{(\alpha +1),(\beta +1)}(\lambda \Gamma (\alpha +1)s^{(\alpha +1)}))^2\text{ d }s<1. \end{aligned}$$

If \(\beta \ne \alpha \), let \(2\alpha -2\beta +1>0\) and \(\eta \in (0,\alpha -\beta +\frac{1}{2})\) be arbitrary, then

$$\begin{aligned} \lim \limits _{t\rightarrow \infty }\sup (\mu \Gamma (\beta +1))^2&\int _0^{t}(t-s)^{2\beta }\cdot \\&(E_{(\alpha +1),(\beta +1)}(\lambda \Gamma (\alpha +1)(t-s)^{(\alpha +1)}))^2\frac{\max \{1,t^{2\eta }\}}{\max \{1,s^{2\eta }\}}\text{ d }s<1. \end{aligned}$$

Specially, If \(\beta =\alpha \), then the condition of \(\eta \) expands to \((0,\alpha +1)\).

Proof

The proof is similar to [Theorem 1.1, Cong et al. 2018]. \(\square \)

The proof of Theorem 4.1

Let us only consider the case of \(\beta \ne \alpha \) because the proof for \(\beta =\alpha \) is similar to [Theorem 3, Doan et al. (2020)]. Choose and fix an arbitrary \(\hat{\eta }\in (\eta ,\alpha -\beta +\frac{1}{2})\). Then, it is sufficient to show that

$$\begin{aligned} \lim \limits _{t\rightarrow \infty }\sup t^{2\hat{\eta }}\frac{{\mathbb {E}}|x(t)|^2}{{\mathbb {E}}|x_0|^2}<\infty . \end{aligned}$$
(8.2)

We are now proving the inequality (8.2) by contradiction. Then, there exists an increasing sequence \(\{t_n\}\) tending to \(\infty \) such that \(\phi _n:=\max \{1,t^{2\hat{\eta }}_n\}\frac{{\mathbb {E}}|x(t)|^2}{{\mathbb {E}}|x_0|^2}\) satisfies

$$\begin{aligned} \phi _n=\max \Big \{\max \{1,t^{2\hat{\eta }}_n\}\frac{{\mathbb {E}}|x(t)|^2}{{\mathbb {E}}|x_0|^2}:\quad t\in [0,t_n] \Big \} \end{aligned}$$

and \(\lim \limits _{n\rightarrow \infty }\phi _n=\infty \). Replacing \(t=t_n\) in Eq. (8.1) and by virtue of Lemma 8.2, we arrive at

$$\begin{aligned} \frac{{\mathbb {E}}|x(t_n)|^2}{{\mathbb {E}}|x_0|^2}&\le \frac{M(\alpha )}{|\lambda |\max \{1,t_n^{2(\alpha +1)}\}}+(\mu \Gamma (\beta +1))^2\cdot \\&\int _0^{t_n}(t_n-s)^{2\beta } (E_{(\alpha +1),(\beta +1)}(\lambda \Gamma (\alpha +1)(t_n-s)^{(\alpha +1)}))^2\frac{{\mathbb {E}}|x(s)|^2}{{\mathbb {E}}|x_0|^2}\text{ d }s, \end{aligned}$$

which implies that

$$\begin{aligned} \phi _n&\le \frac{M(\alpha )\max \{1,t_n^{2\hat{\eta }}\}}{|\lambda |\max \{1,t_n^{2(\alpha +1)}\}}+\phi _n(\mu \Gamma (\beta +1))^2\cdot \\&\int _0^{t_n}(t_n-s)^{2\beta } (E_{(\alpha +1),(\beta +1)}(\lambda \Gamma (\alpha +1)(t_n-s)^{(\alpha +1)}))^2\frac{\max \{1,t_n^{2\hat{\eta }}\}}{\max \{1,s^{2\hat{\eta }}\}}\text{ d }s. \end{aligned}$$

Therefore,

$$\begin{aligned} \phi _n\Big (1-(\mu \Gamma (\beta +1))^2&\int _0^{t_n}(t_n-s)^{2\beta } (E_{(\alpha +1),(\beta +1)}(\lambda \Gamma (\alpha +1)(t_n-s)^{(\alpha +1)}))^2\cdot \\&\frac{\max \{1,t_n^{2\hat{\eta }}\}}{\max \{1,s^{2\hat{\eta }}\}}\text{ d }s\Big )\le \frac{M(\alpha )\max \{1,t_n^{2\hat{\eta }}\}}{|\lambda |\max \{1,t_n^{2(\alpha +1)}\}}. \end{aligned}$$

Since \(2\hat{\eta }<2\alpha -2\beta +1<2(\alpha +1)\), it follows that

$$\begin{aligned} \lim \limits _{t\rightarrow \infty }\sup \frac{M(\alpha )\max \{1,t_n^{2\hat{\eta }}\}}{|\lambda |\max \{1,t_n^{2(\alpha +1)}\}}=0, \end{aligned}$$

which contradicts to the definition of \(\lim \limits _{n\rightarrow \infty }\phi _n=\infty \) and Lemma 8.3. The proof is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Dai, X., Yu, Y. et al. Fast \(\theta \)-Maruyama scheme for stochastic Volterra integral equations of convolution type: mean-square stability and strong convergence analysis. Comp. Appl. Math. 42, 108 (2023). https://doi.org/10.1007/s40314-023-02248-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02248-3

Keywords

Mathematics Subject Classification

Navigation