Skip to main content
Log in

Virtual element methods for weakly damped wave equations on polygonal meshes

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We develop a virtual element method for weakly damped wave equations on polygonal meshes. Very general polygonal meshes are used for the spatial discretization. In both \(L^{2}\) norm and \(H^{1}\) semi-norm, optimal order of convergence is obtained for the spatially discrete approximation. We employ the Crank–Nicolson temporal discretization scheme for the fully discrete problem and derive the convergence analysis. Numerical experiments are illustrated to confirm our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Ahmad B, Alsaedi A, Brezzi F, Marini LD, Russo A (2013) Equivalent projectors for virtual element methods. Comput Math Appl 66(3):376–391

    Article  MathSciNet  MATH  Google Scholar 

  • Antonietti PF, Manzini G, Mazzieri I, Mourad HM, Verani M (2021) The arbitrary-order virtual element method for linear elastodynamics models: convergence, stability and dispersion-dissipation analysis. Int J Numer Methods Eng 122(4):934–971

    Article  MathSciNet  Google Scholar 

  • Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214

    Article  MathSciNet  MATH  Google Scholar 

  • Beirão da Veiga L, Brezzi F, Marini LD, Russo A (2014) The hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24(08):1541–1573

    Article  MathSciNet  MATH  Google Scholar 

  • Beirão da Veiga L, Brezzi F, Marini LD, Russo A (2016) Virtual element method for general second-order elliptic problems on polygonal meshes. Math Models Methods Appl Sci 26(04):729–750

    Article  MathSciNet  MATH  Google Scholar 

  • Birkebak RC, Felts WJL, Harrison RJ (1966) Heat transfer in biological systems. Int Rev Gen Exp Zool 2:269–344

    Article  Google Scholar 

  • Böhme G (2012) Non-Newtonian fluid mechanics. Elsevier, Amsterdam

    Google Scholar 

  • Bowman HF, Cravalho EG, Woods M (1975) Theory, measurement, and application of thermal properties of biomaterials. Annu Rev Biophys Bioeng 4(1):43–80

    Article  Google Scholar 

  • Cangiani A, Manzini G, Sutton OJ (2017) Conforming and nonconforming virtual element methods for elliptic problems. IMA J Numer Anal 37(3):1317–1354

    MathSciNet  MATH  Google Scholar 

  • Cattaneo C (1958) Sur une forme de l’equation de la chaleur eliminant la paradoxe d’une propagation instantantee. Compt. Rendu 247:431–433

    MATH  Google Scholar 

  • Chen L, Huang J (2018) Some error analysis on virtual element methods. Calcolo 55(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Dassi F, Fumagalli A, Mazzieri I, Scotti A, Vacca G (2022) A virtual element method for the wave equation on curved edges in two dimensions. J Sci Comput 90(1):1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Deka B, Dutta J (2020) Convergence of finite element methods for hyperbolic heat conduction model with an interface. Comput Math Appl 79(11):3139–3159

    Article  MathSciNet  MATH  Google Scholar 

  • Deka B, Dutta J (2020) Finite element methods for non-Fourier thermal wave model of bio heat transfer with an interface. J Appl Math Comput 62(1):701–724

    Article  MathSciNet  MATH  Google Scholar 

  • Gardini F, Vacca G (2018) Virtual element method for second-order elliptic eigenvalue problems. IMA J Numer Anal 38(4):2026–2054

    Article  MathSciNet  MATH  Google Scholar 

  • Ikawa M (2000) Hyperbolic partial differential equations and wave phenomena, vol 2. American Mathematical Society, Providence

    Book  MATH  Google Scholar 

  • Kumar P, Kumar D, Rai KN (2015) A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment. J Therm Biol 49:98–105

    Article  Google Scholar 

  • Liu K-C, Wang Y-N, Chen Y-S (2012) Investigation on the bio-heat transfer with the dual-phase-lag effect. Int J Therm Sci 58:29–35

    Article  Google Scholar 

  • Mitra K, Kumar S, Vedevarz A, Moallemi MK (1995) Experimental evidence of hyperbolic heat conduction in processed meat. J Heat Transfer 117(3):568–573

  • Narasimhan A, Sadasivam S (2013) Non-Fourier bio heat transfer modelling of thermal damage during retinal laser irradiation. Int J Heat Mass Transf 60:591–597

    Article  Google Scholar 

  • Pascal H (1986) Pressure wave propagation in a fluid flowing through a porous medium and problems related to interpretation of Stoneley’s wave attenuation in acoustical well logging. Int J Eng Sci 24(9):1553–1570

    Article  MATH  Google Scholar 

  • Radu P, Todorova G, Yordanov B (2008) Higher order energy decay rates for damped wave equations with variable coefficients. arXiv preprint. arXiv:0811.2159

  • Robinson JC (2001) Infinite-dimensional dynamical systems: an introduction to dissipative parabolic PDEs and the theory of global attractors, vol 28. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Roos H-G, Stynes M, Tobiska L (2008) Robust numerical methods for singularly perturbed differential equations: convection–diffusion–reaction and flow problems, vol 24. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Singh S, Singh S, Li Z (2018) A high order compact scheme for a thermal wave model of bio-heat transfer with an interface. Numer Math Theory Methods Appl 11(2):321–337

  • Vacca G (2017) Virtual element methods for hyperbolic problems on polygonal meshes. Comput Math Appl 74(5):882–898

    Article  MathSciNet  MATH  Google Scholar 

  • Vacca G, Beirão da Veiga L (2015) Virtual element methods for parabolic problems on polygonal meshes. Numer Methods Partial Differ Equ 31(6):2110–2134

    Article  MathSciNet  MATH  Google Scholar 

  • Vernotte P (1958) Les paradoxes de la theorie continue de l’equation de la chaleur. Compt. Rendu 246:3154–3155

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments and suggestions. The first author would like to acknowledge CSIR, India for financial assistance during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupen Deka.

Additional information

Communicated by Frederic Valentin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 3.1

We take \(t\rightarrow 0^{+}\) in (3.1) and then using definition of the elliptic projection operator \(R_{h},\) we get

$$\begin{aligned} m_{h}(u_{htt}(0),w_{h})&=-s_{h}(u_{ht}(0),w_{h})-a_{h}(u_{h}(0),w_{h})+(f_{h}(0),w_{h}) \nonumber \\&=-s_{h}(R_{h}v_{0},w_{h})-a_{h}(R_{h}u_{0},w_{h})+(f_{h}(0),w_{h})\nonumber \\&=-s_{h}(R_{h}v_{0},w_{h})-a(u_{0},w_{h})+(f_{h}(0),w_{h}). \end{aligned}$$
(5.1)

From the continuity of the bilinear form \(s_{h}\) and the \(H^{1}\)-stability of \(R_{h},\) we have

$$\begin{aligned} s_{h}(R_{h}v_{0},w_{h}) \le \gamma _{2}\Vert R_{h}v_{0}\Vert \Vert w_{h}\Vert \le C\Vert v_{0}\Vert \Vert w_{h}\Vert . \end{aligned}$$
(5.2)

By using Green’s formula and boundary condition the second term can be bounded as

$$\begin{aligned} -a(u_{0},w_{h})=(\nabla \cdot (\sigma (x)\nabla u_{0}),w_{h})\le C\Vert u_{0}\Vert _{2}\Vert w_{h}\Vert . \end{aligned}$$
(6.1)

Again, from Lemma 2.1 and the fact that, for any Banach space \({\mathbb {B}},\) (cf. Robinson 2001, Proposition 7.1)

$$\begin{aligned} \sup _{0\le t \le T}\Vert v(t)\Vert _{{\mathbb {B}}}\le C \Vert v\Vert _{H^{1}({\mathcal {J}};{\mathbb {B}})},\quad v\in H^{1}({\mathcal {J}};{\mathbb {B}}), \end{aligned}$$
(6.2)

we obtain

$$\begin{aligned} (f_{h}(0),w_{h}) \le C\Vert f\Vert _{H^{1}(L^{2})}\Vert w_{h}\Vert . \end{aligned}$$
(6.3)

Now, substituting \(w_{h}=u_{htt}(0),\) using the stability of \(m_{h}\) and the estimates in (6.2), (6.3) and (4.10) in (6.1) yields

$$\begin{aligned} \Vert u_{htt}(0)\Vert \le C(\Vert u_{0}\Vert _{2}+\Vert v_{0}\Vert +\Vert f\Vert _{H^{1}(L^{2})}). \end{aligned}$$
(6.4)

Again, from the \(H^{1}\)-stability of \(R_{h},\) we have

$$\begin{aligned} \Vert u_{ht}(0)\Vert _{1}=\Vert R_{h}v_{0}\Vert _{1} \le C\Vert v_{0}\Vert _{1}. \end{aligned}$$

This proves the result for \(k=2.\) For \(k=3,\) from (3.1) and (2.1) for \(t\rightarrow 0^+,\) we have

$$\begin{aligned} m_{h}(u_{htt}(0),w_{h})-(u_{tt}(0),w_{h})=s(v_{0},w_{h}) -s_{h}(R_{h}v_{0},w_{h})+(f_{h}(0)-f(0),w_{h}). \end{aligned}$$

Here, we have used the definition of \(R_{h}\) operator. Now, from the definition of \(L^{2}\)-projection operators \(L_{i,h},\) \(i=1,2,\) we obtain

$$\begin{aligned} m_{h}(u_{htt}(0)-L_{1,h}u_{tt}(0),w_{h})=s_{h}(L_{2,h}v_{0} -R_{h}v_{0},w_{h})+(f_{h}(0)-f(0),w_{h}). \end{aligned}$$

Setting \(w_{h}=u_{htt}(0)-L_{1,h}u_{tt}(0),\) using stability of \(m_{h},\) continuity of \(s_{h},\) approximation properties of operators \(R_{h}\) and \(L_{2,h},\) and definition of \(f_{h},\) we obtain

$$\begin{aligned} \Vert u_{htt}(0)-L_{1,h}u_{tt}(0)\Vert&\le C(\Vert L_{2,h}v_{0}-R_{h}v_{0}\Vert + \Vert f_{h}(0)-f(0)\Vert ) \end{aligned}$$
(6.5)
$$\begin{aligned}&\le Ch(\Vert v_{0}\Vert _{1}+\Vert f\Vert _{H^{1}(H^{1})}). \end{aligned}$$
(6.6)

Estimate (4.12) along with inverse inequality (2.5) and \(H^{1}\)-stability of \(L_{1,h}\) yields

$$\begin{aligned} \Vert u_{htt}(0)\Vert _{1}&\le Ch^{-1}\Vert u_{htt}(0)-L_{1,h}u_{tt}(0)\Vert + \Vert L_{1,h}u_{tt}(0)\Vert _{1}\nonumber \\&\le C(\Vert v_{0}\Vert _{1}+\Vert f\Vert _{H^{1}(H^{1})}+\Vert u_{tt}(0)\Vert _{1}). \end{aligned}$$
(6.7)

From (1.1), we have

$$\begin{aligned} u_{tt}(0)=-\alpha (x)v_{0}+\nabla \cdot (\sigma (x)\nabla u_{0})+f(0). \end{aligned}$$
(6.8)

Now, using (6.4), we get

$$\begin{aligned} \Vert u_{tt}(0)\Vert _{1}\le C(\Vert u_{0}\Vert _{3}+\Vert v_{0}\Vert _{1}+\Vert f\Vert _{H^{1}(H^{1})}). \end{aligned}$$
(6.9)

Hence, using (6.11), (6.9) reduces to

$$\begin{aligned} \Vert u_{htt}(0)\Vert _{1}\le C(\Vert u_{0}\Vert _{3}+\Vert v_{0}\Vert _{1}+\Vert f\Vert _{H^{1}(H^{1})}). \end{aligned}$$
(6.10)

Next, differentiating (3.1) partially with respect to variable t and then taking \(t \rightarrow 0^{+},\) we obtain

$$\begin{aligned} m_{h}(u_{httt}(0),w_{h})&=-s_{h}(u_{htt}(0),w_{h}) -a_{h}(R_{h}v_{0},w_{h})+(f_{ht}(0),w_{h})\\&=-s_{h}(u_{htt}(0),w_{h})-a(v_{0},w_{h})+(f_{ht}(0),w_{h}). \end{aligned}$$

Following the arguments as in (6.6), we can easily derive

$$\begin{aligned} \Vert u_{httt}(0)\Vert \le C(\Vert u_{0}\Vert _{2}+\Vert v_{0}\Vert _{2}+\Vert f\Vert _{H^{2}(L^{2})}). \end{aligned}$$
(6.11)

This proves the result for \(k=3.\) For \(k=4,\) we first observe that

$$\begin{aligned} m_{h}(u_{htttt}(0),w_{h})&=-s_{h}(u_{httt}(0),w_{h}) -a_{h}(u_{htt}(0),w_{h})+(f_{htt}(0),w_{h}) \nonumber \\&=-s_{h}(u_{httt}(0),w_{h})-a_{h}(u_{htt}(0)-R_{h}u_{tt}(0),w_{h})\nonumber \\&\quad -a(u_{tt}(0),w_{h})+(f_{htt}(0),w_{h}) \nonumber \\&=-s_{h}(u_{httt}(0),w_{h})-a_{h}(u_{htt}(0)-R_{h}u_{tt}(0),w_{h})\nonumber \\&\quad +(\nabla \cdot (\sigma (x)\nabla u_{tt}(0)),w_{h})+(f_{htt}(0),w_{h}) \nonumber \\&\le C\left( \Vert u_{httt}(0)\Vert +h^{-1}\Vert u_{htt}(0)-R_{h}u_{tt}(0)\Vert _{1}\right. \nonumber \\&\quad \left. +\Vert u_{tt}(0)\Vert _{2}+ \Vert f\Vert _{H^{3}(L^{2})}\right) \Vert w_{h}\Vert . \end{aligned}$$
(6.12)

Now using inverse inequality (2.5) and (6.7), we have

$$\begin{aligned} \Vert u_{htt}(0)-R_{h}u_{tt}(0)\Vert _{1}&\le Ch^{-1} \Vert u_{htt}(0) -L_{1,h}u_{tt}(0)\Vert +\Vert L_{1,h}u_{tt}(0)-R_{h}u_{tt}(0)\Vert _{1}\nonumber \\&\le Ch(\Vert v_{0}\Vert _{2}+\Vert f\Vert _{H^{1}(H^{2})}+\Vert u_{tt}(0)\Vert _{2}). \end{aligned}$$
(6.13)

Similar to (6.11) from (6.10), we have

$$\begin{aligned} \Vert u_{tt}(0)\Vert _{2}\le C(\Vert u_{0}\Vert _{4}+\Vert v_{0}\Vert _{2}+\Vert f\Vert _{H^{1}(H^{2})}). \end{aligned}$$
(6.14)

Substituting \(w_{h}=u_{htttt}(0)\) and then using estimate (6.16) together with (6.13) and (6.15) in (6.14), gives us

$$\begin{aligned} \Vert u_{htttt}(0)\Vert \le C(\Vert u_{0}\Vert _{4}+\Vert v_{0}\Vert _{2}+\Vert f\Vert _{H^{3}(H^{2})}). \end{aligned}$$
(6.15)

Now, using the same argument employed in (6.9), we get

$$\begin{aligned} \Vert u_{httt}(0)\Vert _{1}&\le Ch^{-1}\Vert u_{httt}(0)-L_{1,h}u_{ttt}(0)\Vert +\Vert L_{1,h}u_{ttt}(0)\Vert _{1}\nonumber \\&\le C(\Vert u_{0}\Vert _{3}+\Vert v_{0}\Vert _{3}+\Vert f\Vert _{H^{2}(H^{1})}). \end{aligned}$$

\(\square \)

Proof of Lemma 3.2

Differentiating (3.1) twice with respect to t and then substituting \(w_{h}=u_{httt},\) we obtain

$$\begin{aligned} \dfrac{1}{2}\dfrac{d}{dt}m_{h}(u_{httt},u_{httt})+s_{h}(u_{httt},u_{httt})+ \dfrac{1}{2}\dfrac{d}{dt}a_{h}(u_{htt},u_{htt})=(f_{htt},u_{httt}). \end{aligned}$$

Now integrating from 0 to T,  application of Young’s inequality and stability of \(m_{h}\) yields

$$\begin{aligned} \int _{0}^{T}\Vert u_{httt}(t)\Vert ^{2}dt\le C\Big (\Vert u_{httt}(0)\Vert ^{2}+\Vert u_{htt}(0)\Vert _{1}^{2}+\int _{0}^{T} \Vert f_{htt}(t)\Vert ^{2}dt\Big ). \end{aligned}$$

Further, using Lemma 3.1 in the above equation, we have

$$\begin{aligned} \Vert u_{httt}\Vert ^{2}_{L^{2}(L^{2})}\le C(\Vert u_{0}\Vert _{3}^{2}+\Vert v_{0}\Vert _{2}^{2}+\Vert f\Vert ^{2}_{H^{2}(H^{1})}). \end{aligned}$$

This proves for \(k=3.\) For the case \(k=4,\) proceeding in a similar manner, we obtain

$$\begin{aligned} \Vert u_{htttt}\Vert ^{2}_{L^{2}(L^{2})}\le C(\Vert u_{0}\Vert _{4}^{2}+\Vert v_{0}\Vert _{3}^{2}+\Vert f\Vert ^{2}_{H^{3}(H^{2})}). \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, G., Dutta, J. & Deka, B. Virtual element methods for weakly damped wave equations on polygonal meshes. Comp. Appl. Math. 42, 137 (2023). https://doi.org/10.1007/s40314-023-02252-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02252-7

Keywords

Mathematics Subject Classification

Navigation