Skip to main content
Log in

An \(H^{1}-\)Galerkin mixed finite element method for rosenau equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, by applying a splitting technique, the non-linear fourth order Rosenau equation is split into a system of coupled equations. Then, an \(H^{1}-\) Galerkin mixed finite element method is proposed for the resultant equations after employing a suitable weak formulation. Semi-discrete and fully discrete schemes are discussed and respective optimal order error estimates are obtained without any constraints on the mesh. Finally, numerical results are computed to validate the efficacy of the method. The proposed method has advantages in respect of higher order error estimate, less requirement of regularity on exact solution and also with reduced size i.e. less than half of the size of resulting linear system over that of mentioned in Manickam et al. (Numer Methods Partial Differ Equ (14):695–716, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atouani N, Ouali Y, Omrani K (2018) Mixed finite element methods for the Rosenau equation. J Appl Math Comput 57:393–420

    Article  MathSciNet  MATH  Google Scholar 

  • Atouani N, Omrani K (2013) Galerkin finite element method for the Rosenau-RLW equation. Comput Math Appl 66(3):289–303

    Article  MathSciNet  MATH  Google Scholar 

  • Atouani N, Omrani K (2015) A new conservative high-order accurate difference scheme for the Rosenau equation. Appl Anal 94(12):2435–2455

    Article  MathSciNet  MATH  Google Scholar 

  • Che H, Zhou Z, Jiang Z, Wang Y (2013) H1-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations. Numer Methods Partial Differ Equ 29(3):799–817

    Article  MATH  Google Scholar 

  • Chen HZ, Wang H (2010) An optimal-order error estimate on an H1-Galerkin mixed method for a nonlinear parabolic equation in porous medium flow. Numer Methods Partial Differ Equ 26(1):188–205

    Article  MATH  Google Scholar 

  • Choo SM, Chung SK, Kim KI (2008) A discontinuous Galerkin method for the Rosenau equation. Appl Numer Math 58(6):783–799

    Article  MathSciNet  MATH  Google Scholar 

  • Chung SK, Ha SN (1994) Finite element Galerkin solutions for the Rosenau equation. Appl Anal 54(1–2):39–56

    Article  MathSciNet  MATH  Google Scholar 

  • Chung SK, Pani AK (2004) A second order splitting lumped mass finite element method for the Rosenau equation. Differen Equ Dyn Syst 12:331–351

    MathSciNet  MATH  Google Scholar 

  • Chung SK, Pani AK (2001) Numerical methods for the rosenau equation: Rosenau equation. Appl Anal 77(3–4):351–369

    Article  MathSciNet  MATH  Google Scholar 

  • Doss L Jones Tarcius, Nandini AP (2012) “An H1-Galerkin mixed finite element method for the extended Fisher-Kolmogorov equation.’’. Int J Numer Anal Model Ser 3:460–485

    MathSciNet  MATH  Google Scholar 

  • Doss L Jones Tarcius, Nandini AP (2019) “A fourth-order H1-Galerkin mixed finite element method for Kuramoto-Sivashinsky equation.’’. Numer Methods Partial Differ Equ 32(2):445–477

    Article  MATH  Google Scholar 

  • Guo L, Chen H (2006) H 1-Galerkin Mixed Finite Element Method for the Regularized Long Wave Equation. Computing 77(2)

  • Kim YD, Lee HY (1998) The convergence of finite element Galerkin solution for the Roseneau equation. Korean J Comput Appl Math 5:171–180

    Article  MathSciNet  MATH  Google Scholar 

  • Lee HY, Ahn MJ (1996) The convergence of the fully discrete solution for the Roseneau equation. Comput Math Appl 32(3):15–22

    Article  MathSciNet  MATH  Google Scholar 

  • Lee HY, Ohm MR, Shin JY (1999) The convergence of fully discrete Galerkin approximations of the Rosenau equation. Korean J Comput Appl Math Ser A 6(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Li H (2009) H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations. Appl Math Comput 212(2):446–457

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Du Y, Li H, Wang J (2015) An H 1-Galerkin mixed finite element method for time fractional reaction-diffusion equation. J Appl Math Comput 47:103–117

    Article  MathSciNet  MATH  Google Scholar 

  • Manickam SAV, Pani AK, Chung SK (1998) A second-order splitting combined with orthogonal cubic spline collocation method for the Rosenau equation. Numer Methods Partial Differ Equ 14(6):695–716

    Article  MathSciNet  MATH  Google Scholar 

  • Manickam SAV, Moudgalya KK, Pani AK (2004) Higher order fully discrete scheme combined with H 1-Galerkin mixed finite element method for semilinear reaction-diffusion equations. J Appl Math Comput 15:1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Nataraj N, Pany AK (2006) An H1-Galerkin mixed finite element method for linear and nonlinear parabolic problems. Differential and difference equations and applications, p.851860

  • Pani AK (1998) An H 1-Galerkin mixed finite element method for parabolic partial differential equations. SIAM J Numer Anal 35(2):712–727

    Article  MathSciNet  MATH  Google Scholar 

  • Pani AK, Fairweather G (2002) H 1-Galerkin mixed finite element methods for parabolic partial integro-differential equations. IMA J Numer Anal 22(2):231–252

    Article  MathSciNet  MATH  Google Scholar 

  • Pani AK, Fairweather G (2002) An H 1-Galerkin mixed finite element method for an evolution equation with a positive-type memory term. SIAM J Numer Analysis 40(4):1475–1490

    Article  MathSciNet  MATH  Google Scholar 

  • Pani AK, Sinha RK, Otta AK (2004) An H1-Galerkin mixed method for second order hyperbolic equations. Int J Numer Anal Model 1(2):111–130

    MathSciNet  MATH  Google Scholar 

  • Pany AK, Nataraj N, Singh S (2007) A new mixed finite element method for Burgers’ equation. J Appl Math Comput 23:43–55

    Article  MathSciNet  MATH  Google Scholar 

  • Park MA (1993) On the Rosenau equation in multidimensional space. Nonlinear Anal 21(1):77–85

    Article  MathSciNet  MATH  Google Scholar 

  • Shi D, Jia X (2020) Superconvergence analysis of the mixed finite element method for the Rosenau equation. J Math Anal Appl 481(1):123485

    Article  MathSciNet  MATH  Google Scholar 

  • Thomée V (2007) Galerkin finite element methods for parabolic problems (Vol. 25). Springer Science and Business Media

  • Tripathy M, Sinha RK (2009) Superconvergence of H 1-Galerkin mixed finite element methods for parabolic problems. Appl Anal 88(8):1213–1231

    Article  MathSciNet  MATH  Google Scholar 

  • Tripathy M, Sinha RK (2012) Superconvergence of H 1-Galerkin mixed finite element methods for second-order elliptic equations. Numer Funct Anal Opt 33(3):320–337

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J (2015) Numerical analysis of a mixed finite element method for Rosenau-Burgers equation. In 2015 International Industrial Informatics and Computer Engineering Conference (pp. 610-614). Atlantis Press

  • Yang L, Hong L, Siriguleng H, Wei G, Zhichao F (2012) H1-Galerkin mixed element method and numerical simulation for the fourth-order parabolic partial differential equations. Math Numerica Sinica 34(3):259

    MathSciNet  MATH  Google Scholar 

  • Zhou Z (2010) An H1-Galerkin mixed finite element method for a class of heat transport equations. Appl Math Model 34(9):2414–2425

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jones Tarcius Doss.

Additional information

Communicated by Frederic Valentin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doss, L.J.T., Aishwarya, L. An \(H^{1}-\)Galerkin mixed finite element method for rosenau equation. Comp. Appl. Math. 42, 112 (2023). https://doi.org/10.1007/s40314-023-02255-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02255-4

Keywords

Mathematics Subject Classification

Navigation