Skip to main content
Log in

A second-order backward differentiation formula for the numerical solution of Cahn–Hilliard–Hele–Shaw system

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a second-order, unconditionally stable numerical scheme for the Cahn–Hilliard–Hele–Shaw system is constructed, which combines the backward differentiation formula in time and the mixed finite element method in space. Based on the Lagrange multiplier approach, we develop the linear discretization for the nonlinear term, which is extremely efficient. By rigorous proofs and calculations, we prove the unique solvability of the numerical solution, the unconditional stability and the error estimates of the proposed scheme. Furthermore, some numerical tests are given on the temporal and spatial convergence rates, spinodal decomposition and energy decay, which are consistent with the results of the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbaszadeh M, Dehghan M (2019) Analysis of mixed finite element method (MFEM) for solving the generalized fractional reaction diffusion equation on nonrectangular domains. Comput Math Appl 78(5):1531–1547

    Article  MathSciNet  MATH  Google Scholar 

  • Alarcn T, Byrne HM, Maini PK (2005) A multiple scale model for tumor growth. Multiscale Model Simul 3(2):440–475

    Article  MathSciNet  MATH  Google Scholar 

  • Badia S, Guilln-Gonzlez F, Gutirrez-Santacreu JV (2011) Finite element approximation of nematic liquid crystal flows using a saddle-point structure. J Comput Phys 230(4):1686–1706

    Article  MathSciNet  MATH  Google Scholar 

  • Brenner SC, Scott LR (2008) The mathematical theory of finite element methods. Texts Appl Math 3(298):263–291

    Google Scholar 

  • Chen W, Liu Y, Wang C, Wise S (2016) Convergence analysis of a fully discrete finite difference scheme for the Cahn–Hilliard–Hele–Shaw equation. Math Comput 85(301):2231–2257

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M (2017) The meshless local collocation method for solving multi-dimensional Cahn-Hilliard, Swift-Hohenberg and phase field crystal equations. Eng Anal Bound Elem 78:49–64

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Gharibi Z (2021) Numerical analysis of fully discrete energy stable weak Galerkin finite element Scheme for a coupled Cahn–Hilliard–Navier–Stokes phase-field model. Appl Math Comput 410:126487

    Article  MathSciNet  MATH  Google Scholar 

  • Diegel AE, Wang C, Wang X et al (2017) Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer Math 137(3):495–534

    Article  MathSciNet  MATH  Google Scholar 

  • Feng X, Wise S (2012) Analysis of a Darcy–Cahn–Hilliard diffuse interface model for the Hele-Shaw flow and its fully discrete finite element approximation. SIAM J Numer Anal 50(3):1320–1343

    Article  MathSciNet  MATH  Google Scholar 

  • Gao Y, Li R, Mei L, Lin Y (2020) A second-order decoupled energy stable numerical scheme for Cahn–Hilliard–Hele–Shaw system. Appl Numer Math 157:338–355

    Article  MathSciNet  MATH  Google Scholar 

  • Gerlee P (2013) The model muddle: in search of tumor growth laws. Can Res 73(8):2407–2411

    Article  Google Scholar 

  • Gharibi Z, Dehghan M (2021) Convergence analysis of weak Galerkin flux-based mixed finite element method for solving singularly perturbed convection-diffusion-reaction problem. Appl Numer Math 163:303–3169

    Article  MathSciNet  MATH  Google Scholar 

  • Giorgini A, Grasselli M, Wu H (2018) The Cahn–Hilliard–Hele–Shaw system with singular potential. Ann l’Inst Henri Poincare Anal Non Lineaire 35(4):1079–1118

    Article  MathSciNet  MATH  Google Scholar 

  • Guo R, Xu Y (2019) Semi-implicit spectral deferred correction method based on the invariant energy quadratization approach for phase field problems. Commun Comput Phys 26(1):87–113

    Article  MathSciNet  MATH  Google Scholar 

  • Guo Y, Jia H, Li J, Li M (2020) Numerical analysis for the Cahn–Hilliard–Hele–Shaw system with variable mobility and logarithmic Flory–Huggins potential. Appl Numer Math 150:206–221

    Article  MathSciNet  MATH  Google Scholar 

  • Han D (2016) A decoupled unconditionally stable numerical scheme for the Cahn–Hilliard–Hele–Shaw system. J Sci Comput 66(3):1102–1121

    Article  MathSciNet  MATH  Google Scholar 

  • Han D, Sun D, Wang X (2014) Two-phase flows in karstic geometry. Math Methods Appl Sci 37(18):3048–3063

    Article  MathSciNet  MATH  Google Scholar 

  • Hawkins-Daarud A, van der Zee KG, Tinsley Oden J (2012) Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int J Numer Methods Biomed Eng 28(1):3–24

    Article  MathSciNet  MATH  Google Scholar 

  • Hecht F, Pironneau O, Ohtsuka K (2010) FreeFEM++. http://www.freefem.org/ff++

  • Jia H, Guo Y, Li J, Huang Y (2020) Analysis of a novel finite element method for a modified Cahn–Hilliard–Hele–Shaw system. J Comput Appl Math 376:112846

    Article  MathSciNet  MATH  Google Scholar 

  • Lee HG, Lowengrub JS, Goodman J (2002) Modelling Pinchoff and reconnection in a Hele–Shaw cell I: the models and their calibration. Phys Fluids 14(2):492–513

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Yu Q, Fang W, Xia B, Kim J (2021) A stable second-order BDF scheme for the three-dimensional Cahn–Hilliard–Hele–Shaw system. Adv Comput Math 47(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Lipnikov K, Moulton JD, Svyatskiy D (2008) A multilevel multiscale mimetic (M3) method for two-phase flows in porous media. J Comput Phys 227(14):6727–6753

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Chen W, Wang C et al (2017) Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer Math 135(3):1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Lowengrub J, Titi ES, Zhao K (2013) Analysis of a mixture model of tumor growth. Eur J Appl Math 24(5):691–734

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadi V, Dehghan M (2019) Simulation of the phase field Cahn-Hilliard and tumor growth models via a numerical scheme: element-free Galerkin method. Comput Methods Appl Mech Eng 345:919–950

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadi V, Dehghan M (2020) A meshless technique based on generalized moving least squares combined with the second-order semi-implicit backward differential formula for numerically solving time-dependent phase field models on the spheres. Appl Numer Math 153:248–275

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadi V, Dehghan M (2021) A divergence-free generalized moving least squares approximation with its application. Appl Numer Math 162(3):374–404

    Article  MathSciNet  MATH  Google Scholar 

  • Porta FD, Grasselli M (2016) On the nonlocal Cahn–Hilliard–Brinkman and Cahn–Hilliard–Hele–Shaw systems. Commun Pure Appl Anal 15(2):299–317

    Article  MathSciNet  MATH  Google Scholar 

  • Sadeghi R, Shadloo MS, Hopp-Hirschler M, Hadjadj A, Nieken U (2018) Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media. Comput Math Appl 75(7):2445–2465

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki RX, Nagatsu Y, Mishra M, Ban T (2019) Fingering pattern induced by spinodal decomposition in hydrodynamically stable displacement in a partially miscible system. Phys Rev Fluids 4(10):104005

    Article  Google Scholar 

  • Tanveer S (1986) The effect of surface tension on the shape of a Hele–Shaw cell bubble. Phys Fluids 29(11):3537–3548

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Wu H (2012) Long-time behavior for the Hele–Shaw–Cahn–Hilliard system. Asymptot Anal 78(4):217–245

    MathSciNet  MATH  Google Scholar 

  • Wang X, Zhang Z (2013) Well-posedness of the Hele–Shaw–Cahn–Hilliard system. Ann Linstitut Heneri Poincare Anal Non Lineaire 30(3):367–384

    Article  MathSciNet  MATH  Google Scholar 

  • Wang D, Wang X, Jia H (2021) A second-order energy stable bdf numerical scheme for the viscous Cahn–Hilliard equation with logarithmic Flory–Huggins potential. Adv Appl Math Mech 13(4):867–891

    Article  MathSciNet  MATH  Google Scholar 

  • Wang D, Wang X, Zhang R, Jia H (2022) An unconditionally stable second-order linear scheme for the Cahn–Hilliard–Hele–Shaw system. Appl Numer Math 171:58–75

    Article  MathSciNet  MATH  Google Scholar 

  • Wang D, Wang X, Jia H (2022) A second order linear energy stable numerical method for the Cahn–Hilliard–Hele–Shaw system. J Comput Appl Math 403:113788

    Article  MathSciNet  MATH  Google Scholar 

  • Wise SM (2010) Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J Sci Comput 44(1):38–68

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng N, Li X (2021) Error analysis of the SAV Fourier-spectral method for the Cahn–Hilliard–Hele–Shaw system. Adv Comput Math 47(5):1–27

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Research Project Supported by Shanxi Scholarship Council of China(No.2021-029) and Shanxi Provincial International Cooperation Base and Platform Project (202104041101019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danxia Wang.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest in this paper. All data generated or analysed during this study are included in this published article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Nie, Y. & Wang, D. A second-order backward differentiation formula for the numerical solution of Cahn–Hilliard–Hele–Shaw system. Comp. Appl. Math. 42, 135 (2023). https://doi.org/10.1007/s40314-023-02280-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02280-3

Keywords

Mathematics Subject Classification

Navigation