Skip to main content
Log in

Higher order Haar wavelet method for numerical solution of integral equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Higher order Haar wavelet method (HOHWM) is applied to integral equations of the second kind. Both Fredholm and Volterra types’ integral equations are considered. The method is applied to nonlinear problems as well. Second- and fourth-order convergence orders are observed in case of HOHWM which is an improvement over the Haar wavelet method (HWM) with first-order convergence only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alipanah A, Dehghan M (2007) Numerical solution of the nonlinear Fredholm integral equations by positive definite functions. Appl Math Comp 190:1754–1761

    MathSciNet  MATH  Google Scholar 

  • Aziz I, Siraj-ul-Islam (2013) New algorithms for numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets. J Comp Appl Math 239:333–345

    MathSciNet  MATH  Google Scholar 

  • Aziz I, Siraj-ul-Islam, Sarler B (2013) Wavelets collocation methods for the numerical solution of elliptic BV problems. Appl Math Model 37:676–694

    MathSciNet  MATH  Google Scholar 

  • Babolian E, Shahsavaran A (2009) Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets. J Comp Appl Math 225:87–95

    MathSciNet  MATH  Google Scholar 

  • Biazar J, Ebrahimi H (2012) Chebyshev wavelets approach for nonlinear systems of Volterra integral equations. Comput Math Appl 63:608–616

    MathSciNet  MATH  Google Scholar 

  • Bulut F, Oruc O, Esen A (2022) Higher order Haar wavelet method integrated with Strang splitting for solving regularized long wave equation. Math Comput Simul 197:277–290

    MathSciNet  MATH  Google Scholar 

  • Diaz L, Martin M, Vampa V (2009) Daubechies wavelet beam and plate finite elements. Finite Elem Anal Des 45:200–209

    MathSciNet  Google Scholar 

  • Ebrahimi N, Rashidinia J (2015) Collocation method for linear and nonlinear Fredholm and Volterra integral equations. Appl Math Comput 270:156–164

    MathSciNet  MATH  Google Scholar 

  • Golberg MA (1990) Numerical solution of integral equations. Springer, New York

    MATH  Google Scholar 

  • Hackbusch W (1989) Integral equations: theory and numerical treatment. Birkhauser Verlag, Basel

    MATH  Google Scholar 

  • Hsiao CH (2004) Haar wavelet approach to linear stiff systems. Math Comput Simul 64:561–567

    MathSciNet  MATH  Google Scholar 

  • Hsiao W, Wang J (2001) Haar wavelet approach to nonlinear stiff systems. Math Comput Simul 57:347–353

    MathSciNet  MATH  Google Scholar 

  • Jang G-W, Kim Y, Choi K (2004) Remesh-free shape optimization using the wavelet-Galerkin method. Int J Solids Struct 41:6465–6483

    MATH  Google Scholar 

  • Javidi M, Golbabai A (2009) Modified homotopy perturbation method for solving non-linear Fredholm integral equations. Chaos Solitons Fract 40:1408–1412

    MATH  Google Scholar 

  • Jena SK, Chakraverty S, Mahesh V, Harursampath D (2022) Wavelet-based techniques for Hygro-Magneto-Thermo vibration of nonlocal strain gradient nanobeam resting on Winkler–Pasternak elastic foundation. Eng Anal Bound Elem 140:494–506

    MathSciNet  MATH  Google Scholar 

  • Jha N, Mohanty RK, Mishra BK (2009) Alternating group explicit iterative method for nonlinear singular Fredholm integro-differential boundary value problems. Int J Comput Math 86:1645–1656

    MathSciNet  MATH  Google Scholar 

  • Lepik U (2005) Numerical solution of differential equations using Haar wavelets. Math Comput Simul 68:127–143

    MathSciNet  MATH  Google Scholar 

  • Lepik U (2007) Numerical solution of evolution equations by the Haar wavelet method. Appl Math Comput 185:695–704

    MathSciNet  MATH  Google Scholar 

  • Liu Y (2009) Application of Chebyshev polynomial in solving Fredholm integral equations. Math Comp Mode 50:465–469

    MathSciNet  MATH  Google Scholar 

  • Liu Y, Liu Y, Cen Z (2008) Daubechies wavelet meshless method for 2-D elastic problems. Tsing Sci Technol 13:605–608

    MathSciNet  Google Scholar 

  • Majak J, Shvartsman B, Kirs M, Pohlak M, Herranen H (2015a) Convergence theorem for the Haar wavelet based discretization method. Compos Struct 126(1):227–232

    Google Scholar 

  • Majak J, Shvartsman B, Karjust K, Mikola M, Haavajõe A, Pohlak M (2015b) On the accuracy of the Haar wavelet discretization method. Compos B Eng 80(1):321–327

    Google Scholar 

  • Majak J, Pohlak M, Karjust K, Eerme M, Kurnitski J, Shvartsman B (2018) New higher order Haar wavelet method: application to FGM structures. Compos Struct 201:72–78

    Google Scholar 

  • Majak J, Shvartsman B, Pohlak M, Karjust K, Eerme M, Tungel E (2019) Solving ordinary differential equations with higher order Haar wavelet method. AIP Conf Proc 2116(330002):1–4

    Google Scholar 

  • Majak J, Shvartsman B, Ratas M, Bassir D, Pohlak M, Karjust K, Eerme M (2020) Higher-order Haar wavelet method for vibration analysis of nanobeams. Mater Today Commun 25(101290):1–6

    Google Scholar 

  • Maleknejad K, Lotfii T (2005) Numerical expansion methods for solving integral equations by interpolation and Gauss quadrature rules. Appl Math Comput 168:111–124

    MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Lotfi T, Rostami Y (2007) Numerical computational method in solving Fredholm integral equations of the second kind by using Coifman wavelet. Appl Math Comput 186:212–218

    MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Hashemizadeh E, Ezzati R (2011) A new approach to the numerical solution of Volterra integral equations by using Bernstein’s approximation. Commun Nonlinear Sci 16:647–655

    MathSciNet  MATH  Google Scholar 

  • Mehrparvar M, Majak J, Karjust K, Arda M (2022) Free vibration analysis of tapered Timoshenko beam with higher order Haar wavelet method. Proc Est Acad Sci 71:77–83

    MathSciNet  MATH  Google Scholar 

  • Mohanty RK (2012) A combined arithmetic average discretization and TAGE iterative method for non-linear two point boundary value problems with a source function in integral form. Differ Equ Dyn Syst 20:423–440

    MathSciNet  MATH  Google Scholar 

  • Mohanty RK, Dhall D (2011) High accuracy arithmetic average discretization for non-linear two point boundary value problems with a source function in integral form. Appl Math 2:1243–1251

    MathSciNet  Google Scholar 

  • Mohanty RK, Jain MK, Dhall D (2011) A cubic spline approximation and application of TAGE iterative method for the solution of two point boundary value problems with forcing function in integral form. Appl Math Model 35:3036–3047

    MathSciNet  MATH  Google Scholar 

  • Mohsen A, El-Gamel M (2010) On the numerical solution of linear and nonlinear Volterra integral and integro-differential equations. Appl Math Comput 217:3330–3337

    MathSciNet  MATH  Google Scholar 

  • Ratas M, Salupere A (2020) Application of higher order Haar wavelet method for solving nonlinear evolution equations. Math Model Anal 25:271–288

    MathSciNet  MATH  Google Scholar 

  • Ratas M, Salupere A, Majak J (2021) Solving nonlinear PDEs using the higher order Haar wavelet method on nonuniform and adaptive grids. Math Model Anal 26:147–169

    MathSciNet  MATH  Google Scholar 

  • Saeedi H, Moghadam M, Mollahasani N, Chuev G (2011) A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun Nonlinear Sci Numer Simul 16:1154–1163

    MathSciNet  MATH  Google Scholar 

  • Siraj-ul-Islam, Aziz I, Šarler B (2010) The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets. Math Comp Mode 50:1577–1590

    MathSciNet  MATH  Google Scholar 

  • Siraj-ul-Islam, Aziz I, Hag F (2010) A comparative study of numerical integration based on Haar wavelets and hybrid functions. Comput Math Appl 59(6):2026–2036

    MathSciNet  MATH  Google Scholar 

  • Siraj-ul-Islam, Aziz I, Al-Fhaid A (2014) An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders. J Comput Appl Math 260:449–469

    MathSciNet  MATH  Google Scholar 

  • Sorrenti M, Sciuva MD, Majak J, Auriemma F (2021) Static response and buckling loads of multilayered composite beams using the refined zigzag theory and higher-order Haar wavelet method. Mech Compos Mater 57:1–18

    Google Scholar 

  • Wazwaz A-M (2006) A comparison study between the modified decomposition method and the traditional methods for solving nonlinear integral equations. Appl Math Comput 181:1703–1712

    MathSciNet  MATH  Google Scholar 

  • Wazwaz A-M (2011) Linear and nonlinear integral equations: methods and applications. Springer, New York

    MATH  Google Scholar 

  • Yousefi S, Razzaghi M (2005) Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations. Math Comp Simul 70:1–8

    MathSciNet  MATH  Google Scholar 

  • Yuzbasi S (2016) A collocation method based on Bernstein polynomials to solve nonlinear Fredholm–Volterra integro-differential equations. Appl Math Comput 273:142–154

    MathSciNet  MATH  Google Scholar 

  • Zhu X, Lei G, Pan G (1997) On application of fast and adaptive Battle–Lemarie wavelets to modelling of multiple lossy transmission lines. J Comput Phys 132:299–311

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siraj-ul-Islam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Hui Liang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasmeen, S., Siraj-ul-Islam & Amin, R. Higher order Haar wavelet method for numerical solution of integral equations. Comp. Appl. Math. 42, 147 (2023). https://doi.org/10.1007/s40314-023-02283-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02283-0

Keywords

Mathematics Subject Classification

Navigation