Skip to main content
Log in

Novel multiscale models in a multicontinuum approach to divide and conquer strategies

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This contribution presents a comprehensive, in-depth analysis of the solution of the mechanical equilibrium problem for a generic solid with microstructure. The exact solution to this problem, referred to here as the reference solution, corresponds to the full-scale model of the problem that takes into account the kinematics and constitutive behavior of its entire microstructure. The analysis is carried out based on the Principle of Multiscale Virtual Power (PMVP) previously proposed by the authors. The PMVP provides a robust theoretical setting whereby the strong links between the reference solution and solutions of the mechanical equilibrium obtained using coarser scale models are brought to light. In this context, some fundamental properties of coarser scale solutions are identified by means of variational arguments. These findings unveil a new homogenization landscape for Representative Volume Element (RVE) multiscale theories, leading to the construction of new Minimal Kinematical Restriction (MKR)-based models where either displacements or tractions may be prescribed on the RVE boundary. A careful observation of the aforementioned landscape leads naturally to the proposal of a new, multicontinuum strategy (a generalized continuum counterpart of multigrid strategies) to approximate the reference solution at low computational cost. In the proposed strategy, the mechanical interactions among neighboring microcells are accounted for in an iterative fashion by means of suitably chosen boundary conditions enforced alternately on the new MKR-based models. The proposed developments are presented assuming a classical continuum at all scales, but the results are equally valid when different kinematical and constitutive assumptions are made at different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Araya R, Harder C, Paredes D, Valentin F (2013) Multiscale hybrid-mixed method. SIAM J Numer Anal 51(6):3505–3531

    MathSciNet  MATH  Google Scholar 

  • Badia S, Quaini A, Quarteroni A (2009) Coupling biot and Navier–Stokes equations for modelling fluid-poroelastic media interaction. J Comput Phys 228(21):7986–8014

    MathSciNet  MATH  Google Scholar 

  • Bensoussan A, Lions J, Papanicolaou G (1978) Asymptotic analysis for periodic structures. Elsevier, North-Holland

    MATH  Google Scholar 

  • Blanco PJ, Sánchez PJ, de Souza Neto EA, Feijóo RA (2014) Variational foundations of RVE-based multiscale models. Technical report, LNCC Research and Development internal report

  • Blanco PJ, Giusti SM (2014) Thermomechanical multiscale constitutive modeling: accounting for microstructural thermal effects. J Elast 115:27–46

    MathSciNet  MATH  Google Scholar 

  • Blanco PJ, Feijóo RA, Urquiza SA (2007) A unified variational approach for coupling 3d–1d models and its blood flow applications. Comput Method Appl Mech Eng 196(41–44):4391–4410

    MathSciNet  MATH  Google Scholar 

  • Blanco PJ, Sánchez PJ, de Souza Neto EA, Feijóo RA (2016a) The method of multiscale virtual power for the derivation of a second order mechanical model. Mech Mater 99:53–67

    Google Scholar 

  • Blanco PJ, Sánchez PJ, de Souza Neto EA, Feijóo RA (2016b) Variational foundations and generalized unified theory of RVE-based multiscale models. Arch Comput Methods Eng 23:191–253

    MathSciNet  MATH  Google Scholar 

  • Blanco PJ, Clausse A, Feijóo RA (2017) Homogenization of the Navier–Stokes equations by means of the multi-scale virtual power principle. Comput Method Appl Mech Eng 315:760–779

    MathSciNet  MATH  Google Scholar 

  • Budiansky B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13:223–227

    Google Scholar 

  • de Souza Neto EA, Feijóo R (2006) Variational foundations of multi-scale constitutive models of solids: small and large strain kinematical formulation. Technical report, LNCC, Laboratório Nacional de Computação Científica

  • de Souza Neto EA, Feijóo RA (2008) On the equivalence between spatial and material volume averaging of stress in large strain multi-scale constitutive models. Mech Mater 40:803–811

    Google Scholar 

  • de Souza Neto EA, Feijóo RA (2010) Variational foundations of large strain multiscale solid constitutive models: kinematical formulation. In: Vaz M, de Souza Neto EA, Muñoz-Rojas P (eds) Computational materials modelling: from classical to multi-scale techniques. Wiley, Chichester, pp 341–378

    Google Scholar 

  • de Souza Neto EA, Blanco PJ, Sánchez PJ, Feijóo RA (2015) An RVE-based multiscale theory of solids with micro-scale inertia and body force effects. Mech Mater 80:136–144

    Google Scholar 

  • Deparis S, Discacciati M, Fourestey G, Quarteroni A (2006) Fluid-structure algorithms based on Steklov–Poincaré operators. Comput Method Appl Mech Eng 195(41–43):5797–5812

    MATH  Google Scholar 

  • Discacciati M, Miglio E, Quarteroni A (2002) Mathematical and numerical models for coupling surface and groundwater flows. Appl Numer Math 43(1–2):57–74

    MathSciNet  MATH  Google Scholar 

  • Discacciati M, Quarteroni A, Valli A (2007) Robin-robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J Numer Anal 45(3):1246–1268

    MathSciNet  MATH  Google Scholar 

  • Feyel F, Chaboche J (2000) Fe\(^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SIC/TI composite materials. Comput Methods Appl Mech Eng 183:309–330

    MATH  Google Scholar 

  • Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3d and 1d Navier–Stokes equations for flow problems in compliant vessels. Comput Method Appl Mech Eng 191(6–7):561–582

    MathSciNet  MATH  Google Scholar 

  • Giusti SM, Blanco PJ, de Souza Neto EA, Feijóo RA (2009) An assessment of the Gurson yield criterion by a computational multi-scale approach. Eng Comput Int J Comput Aided Eng Softw 26(3):281–301

    MATH  Google Scholar 

  • Gurson A (1949) Continuum theory of ductile rupture by void nucleation and growth. Part I: yield criteria and flow rule for porous media. J Eng Mater Technol 99:2–15

    Google Scholar 

  • Hackbusch W (1985) Multi-grid methods and applications. Series in computational mathematics. Springer, Berlin

    MATH  Google Scholar 

  • Harder C, Paredes D, Valentin F (2013) A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients. J Comput Phys 245:107–130

    MathSciNet  MATH  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the theory of elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140

    MathSciNet  MATH  Google Scholar 

  • Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    MATH  Google Scholar 

  • Hill R (1965a) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13:89–101

    MATH  Google Scholar 

  • Hill R (1965b) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222

    Google Scholar 

  • Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond A 326:131–147

    MATH  Google Scholar 

  • Irving J, Kirkwood J (1950) The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J Chem Phys 18:817–829

    MathSciNet  Google Scholar 

  • Kanouté P, Boso DPJLC, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16:31–75

    MATH  Google Scholar 

  • Kirkwood J (1946) The statistical mechanical theory of transport processes. I. General theory. J Chem Phys 14:180–201

    Google Scholar 

  • Kirkwood J (1947) The statistical mechanical theory of transport processes. II. Transport in gases. J Chem Phys 15:72–76

    Google Scholar 

  • Kirkwood J, Buff F, Greenn M (1949) The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids. J Chem Phys 17:988–994

    Google Scholar 

  • Kouznetsova V, Brekelmans W, Baaijens F (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27:37–48

    MATH  Google Scholar 

  • Kouznetsova V, Geers M, Brekelmans W (2002) Multiscale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Method Eng 54:1235–1260

    MATH  Google Scholar 

  • Kouznetsova V, Geers M, Brekelmans W (2004) Multiscale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Method Appl Mech Eng 193:5525–5550

    MATH  Google Scholar 

  • Larsson R, Diebels S (2007) A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int J Numer Method Eng 69:2485–2512

    MathSciNet  MATH  Google Scholar 

  • Larsson R, Zhang Y (2007) Homogenization of microsystem interconnects based on micropolar theory and discontinuous kinematics. J Mech Phys Solids 55:819–841

    MathSciNet  MATH  Google Scholar 

  • Larsson F, Runesson K, Su F (2010) Variationally consistent computational homogenization of transient heat flow. Int J Numer Method Eng 81:1659–1686

    MathSciNet  MATH  Google Scholar 

  • MacLachlan SP, Moulton JD (2006) Multilevel upscaling through variational coarsening. Water Resour Res 42(2):62

    Google Scholar 

  • Mandel J (1971) Plasticité Classique et Viscoplasticité. CISM lecture notes no 97. Springer, Berlin

    MATH  Google Scholar 

  • McDowell DL (2010) A perspective on trends in multiscale plasticity. Int J Plasticity 26:1280–1309

    MATH  Google Scholar 

  • Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Method Appl Mech Eng 172:109–143

    MathSciNet  MATH  Google Scholar 

  • Miehe C, Bayreuther CG (2007) On multiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers. Int J Numer Method Eng 71(10):1135–1180

    MathSciNet  MATH  Google Scholar 

  • Miehe C, Koch A (2002) Computational micro-to-macro transition of discretized microstructures undergoing small strain. Arch Appl Mech 72:300–317

    MATH  Google Scholar 

  • Miehe C, Schotte J, Schröder J (1999) Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput Mater Sci 6:372–382

    Google Scholar 

  • Miehe C, Schotte J, Lambrecht J (2002a) Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J Mech Phys Solids 50:2123–2167

    MathSciNet  MATH  Google Scholar 

  • Miehe C, Schroder J, Becker M (2002b) Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro- and macro-scales of periodics composites and their interaction. Comput Method Appl Mech Eng 191:4971–5005

    MathSciNet  MATH  Google Scholar 

  • Nemat-Nasser S (1999) Averaging theorems in finite deformation plasticity. Mech Mater 31:493–523

    Google Scholar 

  • Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. Numerical mathematics and scientific computation. Oxford University Press, UK

    MATH  Google Scholar 

  • Rocha FF, Blanco PJ, Sánchez PJ, Feijóo RA (2018) Multi-scale modelling of arterial tissue: linking networks of fibres to continua. Comput Methods Appl Mech Eng 341:740–787

    MathSciNet  MATH  Google Scholar 

  • Sánchez PJ, Blanco PJ, Huespe AE, Feijóo RA (2011) Failure-oriented multi-scale variational formulation for softening materials. Technical report P &D N\(^{\circ }\)6, LNCC-MCTI Laboratório Nacional de Computação Científica

  • Sánchez PJ, Blanco PJ, Huespe AE, Feijóo RA (2013) Failure-oriented multi-scale variational formulation: micro-structures with nucleation and evolution of softening bands. Comput Method Appl Mech Eng 257:221–247

    MathSciNet  MATH  Google Scholar 

  • Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory, vol 127. Lecture notes in physics. Springer, Berlin

    MATH  Google Scholar 

  • Sanchez-Palencia E (1981) Homogenization method for the study of composite media. In: Verhulst F (ed) Asymptotic analysis II. Surveys and new trends, vol 985. Lecture notes in mathematics. Springer, Berlin, pp 192–214

    Google Scholar 

  • Sunyk R, Steinmann P (2003) On higher gradients in continuum-atomistic modelling. Int J Solids Struct 40:6877–6896

    MATH  Google Scholar 

  • Swan CC (1994) Techniques for stress- and strain-controlled homogenization of inelastic periodic composites. Comput Method Appl Mech Eng 117:249–267

    MathSciNet  MATH  Google Scholar 

  • Taroco EO, Blanco PJ, Feijóo RA (2020) Introduction to the variational formulation in mechanics: fundamental and applications. John Wiley & Sons Ltd, UK

    Google Scholar 

  • Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Method Appl Mech Eng 190:5427–5464

    MATH  Google Scholar 

  • Terada K, Watanabe I, Akiyama M (2006) Effects of shape and size of crystal grains on the strengths of polycrystalline metals. Int J Multiscale Comput Eng 4:445–460

    Google Scholar 

  • Toro S, Sánchez PJ, Huespe AE, Giusti SM, Blanco PJ, Feijóo RA (2014) A two-scale failure model for heterogeneous materials: numerical implementation based on the finite element method. Int J Numer Method Eng 97:313–351

    MathSciNet  MATH  Google Scholar 

  • Toro S, Sánchez PJ, Blanco PJ, de Souza Neto EA, Huespe AE, Feijóo RA (2016a) Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales. Int J Plasticity 76:75–110

    Google Scholar 

  • Toro S, Sánchez PJ, Podestá JM, Blanco PJ, Huespe AE, Feijóo RA (2016b) Cohesive surface model for fracture based on a two-scale formulation: computational implementation aspects. Comput Mech 58:549–585

    MathSciNet  MATH  Google Scholar 

  • Toselli A, Widlund OB (2005) Domain decomposition methods–algorithms and theory, vol 34. Springer series in computational mathematics (SSCM). Springer, Berlin

    MATH  Google Scholar 

  • Watanabe I, Terada K, de Souza Neto EA, Perić D (2006) Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis. J Mech Phys Solids 56:1105–1125

    MathSciNet  MATH  Google Scholar 

  • Wesseling P (2004) An introduction to multigrid methods. R.T. Edwards, Portland

    MATH  Google Scholar 

Download references

Acknowledgements

PJB and RAF acknowledge the support of the Brazilian agencies CNPq (grant numbers 301224/2016-1, 407751/2018-1, and 301636/2019-2), and FAPESP (grant numbers 2014/50889-7 and 2018/14221-2). PJS acknowledges the financial support from CONICET and ANPCyT (grant PICT-2020-SERIEA-02793).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo J. Blanco.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Communicated by Abimael Loula.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The MKR multiscale model

According to Blanco et al. (2014, 2016b), Taroco et al. (2020), a kinematically admissible displacement \(\textbf{u}_\mu \in \mathcal {V}_\mu \) is characterized by the Minimal Kinematical Restriction multiscale model (MKR model), which satisfies the Principle of Multiscale Kinematical Admissibility. This implies that the following relations are satisfied: \(\textbf{u}_M\vert _{\textbf{x}_i}=\mathcal {H}_\mu ^{\mathcal {V}}(\textbf{u}_\mu )\) and \(\textbf{G}_M\vert _{\textbf{x}_i}= \mathcal {H}_\mu ^{\mathcal {W}}(\nabla \textbf{u}_\mu )\), leading to the kinematical restrictions

$$\begin{aligned} \mathcal {H}_\mu ^{\mathcal {V}}(\widetilde{\textbf{u}}_\mu )= & {} \frac{1}{\vert \mathcal {P}_\mu ^{i,s}\vert }\int \limits _{\mathcal {P}_\mu ^{i,s}} \widetilde{\textbf{u}}_\mu \, d\Omega _\mu = \textbf{0}, \end{aligned}$$
(A1)
$$\begin{aligned} \mathcal {H}_\mu ^{\mathcal {W}}(\nabla \widetilde{\textbf{u}}_\mu )= & {} \frac{1}{\vert \mathcal {P}_\mu ^{i,s}\vert } \left[ \int \limits _{\mathcal {P}_\mu ^{i,s}}\nabla \widetilde{\textbf{u}}_\mu \, d\Omega _\mu - \int \limits _{\partial \mathcal {P}_\mu ^{i, s, v_i}} \widetilde{\textbf{u}}_\mu \otimes \textbf{n}_\mu ^{v_i} \, d\partial \Omega _\mu \right. \nonumber \\{} & {} \left. - \int \limits _{\partial \mathcal {P}_\mu ^{i, s, v_b}} \widetilde{\textbf{u}}_\mu \otimes \textbf{n}_\mu ^{v_b} \, d\partial \Omega _\mu - \int \limits _{\partial \mathcal {P}_\mu ^{i,s, b}} \widetilde{\textbf{u}}_\mu \otimes \overline{\textbf{n}}_\mu \, d\partial \Omega _\mu \right] \nonumber \\= & {} \frac{1}{\vert \mathcal {P}_\mu ^{i,s}\vert } \int \limits _{\partial \mathcal {P}_\mu ^{i,s, b}} \widetilde{\textbf{u}}_\mu \otimes (\textbf{n}_\mu - \overline{\textbf{n}}_\mu ) \, d\partial \Omega _\mu \nonumber \\= & {} \mathcal {H}_{\mu ,\partial \mathcal {P}_\mu ^{i,s, b}}^{\mathcal {W}}(\widetilde{\textbf{u}}_\mu \vert _{\partial \mathcal {P}_\mu ^{i,s, b}}) = \textbf{O}. \end{aligned}$$
(A2)

Then, the kinematically admissible displacements for the MKR model live in the linear manifold \(Kin_{\textbf{u}_\mu }^{MKR}\) characterized by

$$\begin{aligned} Kin_{\textbf{u}_\mu }^{MKR}= & {} \{ \textbf{u}_\mu \in \mathcal {V}_\mu ; \mathcal {H}_\mu ^{\mathcal {V}}(\textbf{u}_\mu )=\textbf{u}_M\vert _{\textbf{x}_i}, \mathcal {H}_\mu ^{\mathcal {W}}(\nabla \textbf{u}_\mu )= \textbf{G}_M\vert _{\textbf{x}_i} \} \nonumber \\= & {} \{ \textbf{u}_\mu \in \mathcal {V}_\mu ; \textbf{u}_\mu = \textbf{u}_M\vert _{\textbf{x}_i} + \textbf{G}_M\vert _{\textbf{x}_i} (\textbf{y} - \textbf{y}_G) + \widetilde{\textbf{u}}_\mu , \nonumber \\{} & {} \mathcal {H}_\mu ^{\mathcal {V}}(\widetilde{\textbf{u}}_\mu )= \textbf{0}, \mathcal {H}_{\mu ,\partial \mathcal {P}_\mu ^{i,s, b}}^{\mathcal {W}}(\widetilde{\textbf{u}}_\mu \vert _{\partial \mathcal {P}_\mu ^{i,s, b}}) = \textbf{O} \} \nonumber \\= & {} \textbf{u}_\mu ^0 + Var_{\widetilde{\textbf{u}}_\mu }^{MKR}, \end{aligned}$$
(A3)

where \(\textbf{u}_\mu ^0\) is an arbitrary element of \(Kin_{\textbf{u}_\mu }^{MKR}\), and \(Var_{\widetilde{\textbf{u}}_\mu }^{MKR}\) is given by

$$\begin{aligned} Var_{\widetilde{\textbf{u}}_\mu }^{MKR}= & {} \{ \textbf{v}_\mu \in \mathcal {V}_\mu ; \mathcal {H}_\mu ^{\mathcal {V}}(\textbf{v})= \textbf{0}, \mathcal {H}_{\mu ,\partial \mathcal {P}_\mu ^{i,s, b}}^{\mathcal {W}}(\textbf{v}\vert _{\partial \mathcal {P}_\mu ^{i,s, b}}) = \textbf{O} \}. \end{aligned}$$
(A4)

Appendix B: Principle of multiscale virtual power

The energetic consistency between scales is satisfied through the formulation of the Principle of Multiscale Virtual Power (PMVP). This balance of power between macro- and microscales was originally proposed in Mandel (1971), Hill (1972) through the so-called Hill–Mandel principle of Macrohomogeneity, which was claimed to hold for the true powers exerted at both scales. In Blanco et al. (2014, 2016b), Taroco et al. (2020), the PMVP was postulated by re-casting the Hill–Mandel principle in a variational setting.

The PMVP applied to the isolated microcell \(\mathcal {P}_\mu ^i\) within the context of the MKR Model, is given by

$$\begin{aligned} \textbf{P}_M\vert _{\textbf{x}_i} \cdot \widehat{\textbf{G}}_M\vert _{\textbf{x}_i} - \textbf{b}_M\vert _{\textbf{x}_i} \cdot \widehat{\textbf{u}}_M\vert _{\textbf{x}_i}{} & {} = \frac{1}{\vert \mathcal {P}_\mu ^i\vert } \bigg [ \int \limits _{\mathcal {P}_\mu ^{i,s}} (\textbf{P}_\mu (\textbf{u}_\mu ) \cdot (\widehat{\textbf{G}}_M\vert _{\textbf{x}_i} + \nabla \textbf{v}) \nonumber \\{} & {} \qquad - \textbf{b}_\mu \cdot (\widehat{\textbf{u}}_M\vert _{\textbf{x}_i} + \widehat{\textbf{G}}_M\vert _{\textbf{x}_i}(\textbf{y} - \textbf{y}_G) + \textbf{v})) \bigg ] d\Omega _\mu , \nonumber \\{} & {} \forall (\widehat{\textbf{u}}_M\vert _{\textbf{x}_i}, \widehat{\textbf{G}}_M\vert _{\textbf{x}_i}, \textbf{v}) \in \mathbb {R}_{\mathcal {V}_M}^{\textbf{x}_i} \times \mathbb {R}_{\mathcal {W}_M}^{\textbf{x}_i} \times Var_{\widetilde{\textbf{u}}_\mu }^{MKR}.\qquad \end{aligned}$$
(B5)

Using standard variational arguments, (B5) yields

  • \(\textbf{P}_M\vert _{\textbf{x}_i}\)-Homogenization (\((\textbf{0}, \forall \widehat{\textbf{G}}_M\vert _{\textbf{x}_i}, \textbf{0})\in \mathbb {R}_{\mathcal {V}_M}^{\textbf{x}_i} \times \mathbb {R}_{\mathcal {W}_M}^{\textbf{x}_i} \times Var_{\widetilde{\textbf{u}}_\mu }^{MKR}\))

    $$\begin{aligned}{} & {} \textbf{P}_M\vert _{\textbf{x}_i} = \frac{1}{\vert \mathcal {P}_\mu ^i\vert } \left[ \int \limits _{\mathcal {P}_\mu ^{i,s}} (\textbf{P}_\mu (\textbf{u}_\mu ) - \textbf{b}_\mu \otimes (\textbf{y} - \textbf{y}_G)) \, d\Omega _\mu \right] . \end{aligned}$$
    (B6)
  • \(\textbf{b}_M\vert _{\textbf{x}_i}\)-Homogenization (\((\forall \widehat{\textbf{u}}_M\vert _{\textbf{x}_i}, \textbf{O},\textbf{0}) \in \mathbb {R}_{\mathcal {V}_M}^{\textbf{x}_i} \times \mathbb {R}_{\mathcal {W}_M}^{\textbf{x}_i} \times Var_{\widetilde{\textbf{u}}_\mu }^{MKR}\))

    $$\begin{aligned} \textbf{b}_M\vert _{\textbf{x}_i} = \frac{1}{\vert \mathcal {P}_\mu ^i\vert } \int \limits _{\mathcal {P}_\mu ^{i,s}} \textbf{b}_\mu \, d\Omega _\mu . \end{aligned}$$
    (B7)
  • Equilibrium of the isolated microcell \(\mathcal {P}_\mu ^i\) given by the following variational problem: Find \(\textbf{u}_\mu ^i \in Kin_{\textbf{u}_\mu }^{MKR}\) (or equivalent find \(\widetilde{\textbf{u}}_\mu ^i \in Var_{\widetilde{\textbf{u}}_\mu }^{MKR}\)) such that satisfies the following variational equation:

    $$\begin{aligned} \int \limits _{\mathcal {P}_\mu ^{i,s}} [\textbf{P}_\mu (\textbf{u}_\mu ^i)\cdot \nabla \textbf{v} - \textbf{b}_\mu \cdot \textbf{v}] d\Omega _\mu = 0 \quad \forall \textbf{v} \in Var_{\widetilde{\textbf{u}}_\mu }^{MKR}. \end{aligned}$$
    (B8)

    Let \({\varvec{\Theta }}_\mu ^{MKR}\) and \({\varvec{\Lambda }}_\mu ^{MKR}\) be the Lagrange multipliers corresponding to the kinematical restrictions \(\mathcal {H}_\mu ^{\mathcal {V}}(\textbf{v})= \textbf{0}\) and \(\mathcal {H}_{\mu ,\partial \mathcal {P}_\mu ^{i,s, b}}^{\mathcal {W}}(\textbf{v}\vert _{\partial \mathcal {P}_\mu ^{i,s, b}}) = \textbf{O}\) in \(Var_{\widetilde{\textbf{u}}_\mu }^{MKR}\), then the above variational problem can be rewritten as follows: Given \(\textbf{u}_M\vert _{\textbf{x}_i}\) and \(\textbf{G}_M\vert _{\textbf{x}_i}\) find \(\widetilde{\textbf{u}}_\mu ^i \in \mathcal {V}_\mu , {\varvec{\Theta }}_\mu ^{MKR} \in \mathbb {R}_{\mathcal {V}_M}^{\textbf{x}_i}\) and \({\varvec{\Lambda }}_\mu ^{MKR} \in \mathbb {R}_{\mathcal {W}_M}^{\textbf{x}_i}\) such that satisfy the following variational equation

    $$\begin{aligned}{} & {} \int \limits _{\mathcal {P}_\mu ^{i,s}} [\textbf{P}_\mu (\textbf{u}_\mu ^i)\cdot \nabla \textbf{v} - (\textbf{b}_\mu + {\varvec{\Theta }}_\mu ^{MKR})\cdot \textbf{v} ] d\Omega _\mu \nonumber \\{} & {} \quad -{\varvec{\Lambda }}_\mu ^{MKR} \cdot \int \limits _{\partial \mathcal {P}_\mu ^{i,s, b}} \textbf{v} \otimes (\textbf{n}_\mu - \overline{\textbf{n}}_\mu ) \, d\partial \Omega _\mu \nonumber \\{} & {} \quad - \widehat{{\varvec{\Theta }}}_\mu ^{MKR} \cdot \int \limits _{\mathcal {P}_\mu ^{i,s}} \widetilde{\textbf{u}}_\mu ^i \, d\Omega _\mu - \widehat{{\varvec{\Lambda }}}_\mu ^{MKR} \cdot \int \limits _{\partial \mathcal {P}_\mu ^{i,s, b}} \widetilde{\textbf{u}}_\mu ^i \otimes (\textbf{n}_\mu - \overline{\textbf{n}}_\mu ) \, d\partial \Omega _\mu = 0, \nonumber \\{} & {} \quad \quad \forall (\widehat{{\varvec{\Theta }}}_\mu ^{MKR}, \widehat{ {\varvec{\Lambda }}}_\mu ^{MKR},\textbf{v})\in \mathbb {R}_{\mathcal {V}_M}^{\textbf{x}_i} \times \mathbb {R}_{\mathcal {W}_M}^{\textbf{x}_i}\times \mathcal {V}_\mu . \end{aligned}$$
    (B9)

    The Euler–Lagrange equations associated with the above variational equilibrium problem are given by

    $$\begin{aligned}{} & {} \mathcal {H}_\mu ^{\mathcal {V}}(\widetilde{\textbf{u}}_\mu ^i)= \textbf{0}, \end{aligned}$$
    (B10)
    $$\begin{aligned}{} & {} \mathcal {H}_{\mu ,\partial \mathcal {P}_\mu ^{i,s, b}}^{\mathcal {W}}(\widetilde{\textbf{u}}_\mu ^i\vert _{\partial \mathcal {P}_\mu ^{i,s, b}}) = \textbf{O}, \end{aligned}$$
    (B11)
    $$\begin{aligned}{} & {} {\text {div}} \textbf{P}_\mu (\textbf{u}_\mu ^i) + \textbf{b}_\mu + {\varvec{{\Theta }}}_\mu ^{MKR}= \textbf{0} \hbox { in } \mathcal {H}_\mu ^{i,k} \; k = 1, \dots , n_i, \end{aligned}$$
    (B12)
    $$\begin{aligned}{} & {} \llbracket \textbf{P}_\mu (\textbf{u}_\mu ^i) \textbf{n}_\mu \rrbracket = \textbf{0} \hbox { on } \partial \mathcal {H}_\mu ^{i,k}\cap \partial \mathcal {H}_\mu ^{i,m}, k\ne m, k, m = 1, \dots , n_i, \end{aligned}$$
    (B13)
    $$\begin{aligned}{} & {} \textbf{P}_\mu (\textbf{u}_\mu ^i) \textbf{n}_\mu = {\varvec{\Lambda }}_\mu ^{MKR} (\textbf{n}_\mu - \overline{\textbf{n}}_\mu )\hbox { on } \partial \mathcal {P}_\mu ^{i,s,b}, \end{aligned}$$
    (B14)
    $$\begin{aligned}{} & {} \textbf{P}_\mu (\textbf{u}_\mu ^i) \textbf{n}_\mu = \textbf{0} \hbox { on } \partial \mathcal {P}_\mu ^{i,v}. \end{aligned}$$
    (B15)

    Since (B9) must be satisfied for all \(\textbf{v} \in \mathcal {V}_\mu \) and in particular for an arbitrary constant vector \(\textbf{v} = \textbf{c}\), we obtain an additional Euler–Lagrange equation characterizing the Lagrange multiplier \( {\varvec{\Theta }}_\mu ^{MKR} \in \mathbb {R}_{\mathcal {V}_M}^{\textbf{x}_i}\)

    $$\begin{aligned} {\varvec{\Theta }}_\mu ^{MKR} = - \frac{1}{\vert \mathcal {P}_\mu ^{i,s}\vert }\int \limits _{\mathcal {P}_\mu ^{i,s}} \textbf{b}_\mu d\Omega _\mu . \end{aligned}$$
    (B16)

    Furthermore, considering variations of the form \(\textbf{v} = \textbf{A} (\textbf{y} - \textbf{y}_G)\) characterized by any constant second-order tensor \(\textbf{A} \in Lin\), we also obtain

    $$\begin{aligned}{} & {} \textbf{A} \cdot \bigg [\int \limits _{\mathcal {P}_\mu ^{i,s}} [\textbf{P}_\mu (\textbf{u}_\mu ^i) - \textbf{b}_\mu \otimes (\textbf{y} - \textbf{y}_G)] d\Omega _\mu \nonumber \\{} & {} \quad - {\varvec{\Lambda }}_\mu ^{MKR} \int \limits _{\partial \mathcal {P}_\mu ^{i,s,b}} (\textbf{n}_\mu -\overline{\textbf{n}}_\mu ) \otimes (\textbf{y} - \textbf{y}_G) d\partial \Omega _\mu \bigg ] = 0 \quad \forall \textbf{A} \in Lin. \end{aligned}$$
    (B17)

    From the above expression, we obtain the Euler–Lagrange equation that characterizes the Lagrange multiplier \({\varvec{\Lambda }}_\mu ^{MKR}\)

    $$\begin{aligned} {\varvec{\Lambda }}_\mu ^{MKR} \textbf{B}_\mu = \int \limits _{\mathcal {P}_\mu ^{i,s}} [\textbf{P}_\mu (\textbf{u}_\mu ^i) - \textbf{b}_\mu \otimes (\textbf{y} - \textbf{y}_G)] d\Omega _\mu , \end{aligned}$$
    (B18)

    where \( \textbf{B}_\mu \) is given by

    $$\begin{aligned} \textbf{B}_\mu= & {} \int \limits _{\partial \mathcal {P}_\mu ^{i,s,b}} (\textbf{n}_\mu -\overline{\textbf{n}}_\mu ) \otimes (\textbf{y} - \textbf{y}_G) d\partial \Omega _\mu . \end{aligned}$$
    (B19)

For the previous developments, spaces \(\mathbb {R}_{\mathcal {V}_M}^{\textbf{x}_i}\) and \(\mathbb {R}_{\mathcal {W}_M}^{\textbf{x}_i}\) depend on the spatial dimension of the problem. For three-dimensional problems, we have \(\mathbb {R}_{\mathcal {V}_M}^{\textbf{x}_i}\rightarrow {\mathbb {R}}^3\) and \(\mathbb {R}_{\mathcal {W}_M}^{\textbf{x}_i}\rightarrow {\mathbb {R}}^{3\times 3}\).

Appendix C: Isolated microcell equilibrium

The equilibrium of the isolated microcell \(\mathcal {P}_\mu ^i\) submitted to the prescribed displacement \(\textbf{u}_\mu ^{*,D}\) at the boundary \(\partial \mathcal {P}_\mu ^{i,s,b}\) and to a force system given by \(\{\textbf{b}_\mu \}\) is characterized by the following variational problem: Find \(\textbf{u}_\mu ^*\vert _{\mathcal {P}_\mu ^{i,s}} \in Kin_{\textbf{u}_\mu }^{*,D}\) such that satisfies the following variational equation:

$$\begin{aligned} \int \limits _{\mathcal {P}_\mu ^{i,s}} [\textbf{P}_\mu (\textbf{u}_\mu ^*)\cdot \nabla \textbf{v} - \textbf{b}_\mu \cdot \textbf{v}] d\Omega _\mu = 0 \quad \forall \textbf{v} \in Var_{\textbf{u}_\mu }^{*,D}, \end{aligned}$$
(C20)

where

$$\begin{aligned} Kin_{\textbf{u}_\mu }^{*,D} = \{\textbf{u}_\mu \in \mathcal {V}_\mu ; \textbf{u}_\mu \vert _{\partial \mathcal {P}_\mu ^{i,s,b}}= \textbf{u}_\mu ^{*,D} \}=\textbf{u}_\mu ^*\vert _{\mathcal {P}_\mu ^{i,s}} + Var_{\textbf{u}_\mu }^{*,D}, \end{aligned}$$
(C21)

and

$$\begin{aligned} Var_{\textbf{u}_\mu }^{*,D} = \{ \textbf{v} \in \mathcal {V}_\mu ; \textbf{v}\vert _{\partial \mathcal {P}_\mu ^{i,s,b}} = \textbf{0}\}. \end{aligned}$$
(C22)

The variational problem (C20) can be redefined by relaxing the kinematical restriction \(\textbf{u}_\mu \vert _{\partial \mathcal {P}_\mu ^{i,s,b}}= \textbf{u}_\mu ^{*,D}\). This procedure leads to the following equivalent variational problem: Find \(\textbf{u}_\mu ^*\vert _{\mathcal {P}_\mu ^{i,s}} \in \mathcal {V}_\mu \) such that satisfies the following variational equation

$$\begin{aligned}{} & {} \int \limits _{\mathcal {P}_\mu ^{i,s}} [\textbf{P}_\mu (\textbf{u}_\mu ^*)\cdot \nabla \textbf{v} - \textbf{b}_\mu \cdot \textbf{v} ] d\Omega _\mu - \int \limits _{\partial \mathcal {P}_\mu ^{i,s,b}}\textbf{t}_\mu ^{*,i} \cdot \textbf{v} d\partial \Omega _\mu \nonumber \\{} & {} \quad - \int \limits _{\partial \mathcal {P}_\mu ^{i,s,b}} \hat{\textbf{t}}_\mu \cdot (\textbf{u}_\mu ^*\vert _{\partial \mathcal {P}_\mu ^{i,s,b}} - \textbf{u}_\mu ^{*,D}) d\partial \Omega _\mu = 0 \nonumber \\{} & {} \quad \forall (\textbf{v}, \hat{\textbf{t}}_\mu ) \in \mathcal {V}_\mu \times \mathcal {V}_\mu '(\partial \mathcal {P}_\mu ^{i,s,b}), \end{aligned}$$
(C23)

where \(\textbf{t}_\mu ^{*,i}\) is the (Lagrange multiplier) vector traction field over \(\partial \mathcal {P}_\mu ^{i,s,b}\) associated by duality with the kinematical restriction \(\textbf{u}_\mu \vert _{\partial \mathcal {P}_\mu ^{i,s,b}}= \textbf{u}_\mu ^{*,D}\), and \(\hat{\textbf{t}}_\mu \) is its virtual variation.

The Euler–Lagrange equations associated to the variational problem (C23) are given by

  • Taking \(\textbf{v}=\textbf{0}\) and for all \(\hat{\textbf{t}}_\mu \in \mathcal {V}_\mu '\), we have

    $$\begin{aligned} \textbf{u}_\mu ^*\vert _{\partial \mathcal {P}_\mu ^{i,s,b}}= \textbf{u}_\mu ^{*,D} \hbox { on } \partial \mathcal {P}_\mu ^{i,s,b}. \end{aligned}$$
    (C24)
  • Taking \(\hat{\textbf{t}}_\mu = \textbf{0}\) and for all \(\textbf{v} \in \mathcal {V}_\mu \), we have

    $$\begin{aligned}{} & {} {\text {div}} \textbf{P}_\mu (\textbf{u}_\mu ^*) + \textbf{b}_\mu = \textbf{0} \hbox { in } \mathcal {H}_\mu ^{i,k} \; k = 1, \dots , n_i, \end{aligned}$$
    (C25)
    $$\begin{aligned}{} & {} \llbracket \textbf{P}_\mu (\textbf{u}_\mu ^*) \textbf{n}_\mu \rrbracket = \textbf{0} \hbox { on } \partial \mathcal {H}_\mu ^{i,k}\cap \partial \mathcal {H}_\mu ^{i,m}, k\ne m, k, m = 1, \dots , n_i, \end{aligned}$$
    (C26)
    $$\begin{aligned}{} & {} \textbf{P}_\mu (\textbf{u}_\mu ^*) \textbf{n}_\mu = \textbf{t}_\mu ^{*,i} \hbox { on } \partial \mathcal {P}_\mu ^{i,s,b}, \end{aligned}$$
    (C27)
    $$\begin{aligned}{} & {} \textbf{P}_\mu (\textbf{u}_\mu ^*) \textbf{n}_\mu = \textbf{0} \hbox { on } \partial \mathcal {P}_\mu ^{i,v}, \end{aligned}$$
    (C28)

Now, since (C23) must be satisfied for all \(\textbf{v} \in \mathcal {V}_\mu \), it particularly holds for any arbitrary constant vector field \(\textbf{v} = \textbf{c}\). Then, it results

$$\begin{aligned} \int \limits _{\partial \mathcal {P}_\mu ^{i,s,b}} \textbf{t}_\mu ^{*,i} d\partial \Omega _\mu = -\int \limits _{\mathcal {P}_\mu ^{i,s}} \textbf{b}_\mu d\Omega _\mu . \end{aligned}$$
(C29)

Also, (C23) must be satisfied for all fields of the form \(\textbf{v} = \textbf{A} (\textbf{y} - \textbf{y}_G)\) characterized by any constant second-order tensor \(\textbf{A} \in Lin\). Then,

$$\begin{aligned}{} & {} \textbf{A} \cdot \bigg [\int \limits _{\mathcal {P}_\mu ^{i,s}} [\textbf{P}_\mu (\textbf{u}_\mu ^*) - \textbf{b}_\mu \otimes (\textbf{y} - \textbf{y}_G)] d\Omega _\mu \nonumber \\{} & {} \quad - \int \limits _{\partial \mathcal {P}_\mu ^{i,s,b}} \textbf{t}_\mu ^{*,i} \otimes (\textbf{y} - \textbf{y}_G) d\partial \Omega _\mu \bigg ] = 0 \quad \forall \textbf{A} \in Lin. \end{aligned}$$
(C30)

From the above expression, we obtain

$$\begin{aligned} \int \limits _{\partial \mathcal {P}_\mu ^{i,s,b}} \textbf{t}_\mu ^{*,i} \otimes (\textbf{y} - \textbf{y}_G) d\partial \Omega _\mu = \int \limits _{\mathcal {P}_\mu ^{i,s}} [\textbf{P}_\mu (\textbf{u}_\mu ^*) - \textbf{b}_\mu \otimes (\textbf{y} - \textbf{y}_G)] d\Omega _\mu . \end{aligned}$$
(C31)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feijóo, R.A., Blanco, P.J., de Souza Neto, E.A. et al. Novel multiscale models in a multicontinuum approach to divide and conquer strategies. Comp. Appl. Math. 42, 143 (2023). https://doi.org/10.1007/s40314-023-02288-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02288-9

Keywords

Mathematics Subject Classification

Navigation