Skip to main content
Log in

Hybridizable discontinuous Galerkin reduced order model for the variable coefficient advection equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a hybridizable discontinuous Galerkin (HDG) model order reduction technique is proposed to solve the variable coefficient advection equation. In order to obtain a high precision original full order model (FOM), the HDG and diagonally implicit Runge–Kutta (DIRK) methods are used for space and time discretization, respectively. The obtained FOM can achieve higher order accuracy in both space and time. Then, we introduce POD method and Galerkin projection to construct the reduced order model (ROM). Compared with the FOM, the proposed ROM can maintain the same higher order accuracy and greatly reduce the computational cost. Finally, some numerical results are illustrated to confirm the validity and higher order accuracy of the proposed reduced order HDG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Alexander R (1977) Diagonally implicit Runge–Kutta methods for stiff O.D.E.’s. SIAM J Numer Anal 14:1006–1021

    Article  MathSciNet  MATH  Google Scholar 

  • Atwell JA, Borggaard JT, King BB (2001) Reduced order controllers for Burgers’ equation with a nonlinear observer. Int J Appl Math Comput Sci 11(6):1311–1330

    MathSciNet  MATH  Google Scholar 

  • Berardocco L, Kronbichler M, Gravemeier V (2020) A hybridizable discontinuous Galerkin method for electromagnetics with a view on subsurface applications. Comput Methods Appl Mech Eng 366:113071

    Article  MathSciNet  MATH  Google Scholar 

  • Cokburn B, Gopalakrishnan J, Lazarov R (2009) Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J Numer Anal 47:1319–1365

    Article  MathSciNet  MATH  Google Scholar 

  • Cokburn B, Gopalakrishnan J, Nguyen NC, Peraire J, Sayas FJ (2011) Analysis of HDG methods for Stokes flow. Math Comput 80(274):732–760

    MathSciNet  Google Scholar 

  • Egger H, Schoberl J (2010) A hybrid mixed discontinuous Galerkin finite element method for convection–diffusion problems. IMA J Numer Anal 30:1206–1234

    Article  MathSciNet  MATH  Google Scholar 

  • Egger H, Waluga C (2013) Hp-analsis of a hybrid DG method for Stokes flow. IMA J Numer Anal 33(2):687–721

    Article  MathSciNet  MATH  Google Scholar 

  • Frank F, Reuter B, Aizinger V, Knabner P (2016) FESTUNG: a MATLAB/GUN Octave toolbox for the discontinuous Glerkin method, Part II: Advection operator and slope limiting. Comput Math Appl 72(2):1896–1925

    MathSciNet  MATH  Google Scholar 

  • Fu GS, Wang Z (2020) POD-(H)DG method for incompressible flow simulations. J Sci Comput 85(2):1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Gong W, Hu WW, Mateos M, Singler J, Zhang YW (2020) Analysis of an hybridizable discontinuous Galerkin scheme for the tangential control of the Stokes system. ESAIM Math Model Numer Anal 54(6):2229–2264

    Article  MathSciNet  MATH  Google Scholar 

  • Jaust A, Reuter B, Aizinger V, Schütz J, Knabner P (2018) FESTUNG: a MATLAB/GUN Octave toolbox for the discontinuous Galerkin method, Part III: Hybridized discontinuous Galerkin (HDG) formulation. Comput Math Appl 75(2):4505–4533

    Article  MathSciNet  MATH  Google Scholar 

  • Kunisch K, Volkwein S (2001) Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math 90(1):117–148

    Article  MathSciNet  MATH  Google Scholar 

  • Leveque RJ (1996) High-resolution conservative algorithms for advection in incompressible flow. SIAM J Numer Anal 33(2):627–665

    Article  MathSciNet  MATH  Google Scholar 

  • Li K, Huang TZ, Li L et al (2018) A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation. IEEE Trans Antennas Propag 66(1):242–254

    Article  Google Scholar 

  • Li K, Huang TZ, Li L, Lanteri S (2018) A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media. J Comput Appl Math 336:249–266

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Shu CW, Tang S (2021) A local discontinuous Galerkin method for nonlinear parabolic SPDEs. ESAIM Math Model Numer Anal 55:187–223

    Article  MathSciNet  MATH  Google Scholar 

  • Liu YL, Shu CW, Zhang AM (2021) Weighted ghost fluid discontinuous Galerkin method for twomedium problems. J Comput Phys 426:109956

    Article  MATH  Google Scholar 

  • Luo ZD, Yang J (2022) The reduced-order method of continuous space-time finite element scheme for the non-stationary incompressible flows. J Comput Phys 456:111044

    Article  MathSciNet  MATH  Google Scholar 

  • Luo ZD, Chen J, Navon IM, Yang X (2008) Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations. SIAM J Numer Anal 47(1):1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Luo ZD, Li H, Sun P (2013) A reduced-order Crank–Nicolson finite volume element formulation based on POD method for parabolic equations. Appl Math Comput 219(11):5887–5900

    MathSciNet  MATH  Google Scholar 

  • Luo ZD, Gao J, Xie Z (2015) Reduced-order finite difference extrapolation model based on proper orthogonal decomposition for two-dimensional shallow water equations including sediment concentration. J Math Anal Appl 429(2):901–923

    Article  MathSciNet  MATH  Google Scholar 

  • Mohebujjaman M, Rebholz LG, Xie X, Iliescu T (2017) Energy balance and mass conservation in reduced order models of fluid flows. J Comput Phys 346:262–277

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen NC, Peraire J (2011) High-order implicit hybridizable discontinuous Galerkin methods for acoustic and elastodynamics. J Comput Phys 230:3695–3718

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen NC, Peraire J (2012) Hybridizable discontinuous Galerkin methods for Partial equation in continuum mechanics. J Comput Phys 231:5955–5988

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen NC, Peraire J, Cockburn B (2009) An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J Comput Phys 228:8841–8855

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen NC, Peraire J, Cockburn B (2009) An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J Comput Phys 228:3232–3254

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen NC, Peraire J, Cockburn B (2011) Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J Comput Phys 230(19):7151–7175

    Article  MathSciNet  MATH  Google Scholar 

  • Quarteroni A, Manzoni A, Negri F (2015) Reduced basis methods for partial differential equation: an introduction. Springer, New York

    MATH  Google Scholar 

  • Ravindran SS (2000) Reduced-order adaptive controllers for fluid flows using POD. J Sci Comput 15(4):457–478

    Article  MathSciNet  MATH  Google Scholar 

  • Rhebergen S, Cockburn B (2012) A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J Comput Phys 231(11):4185–4204

    Article  MathSciNet  MATH  Google Scholar 

  • Rhebergen S, Wells GN (2018) A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field. J Sci Comput 76:1484–1501

    Article  MathSciNet  MATH  Google Scholar 

  • Schütz J, May G (2013) A hybrid mixed method for the compressible Navier–Stokes equations. J Comput Phys 240:58–75

    Article  MathSciNet  MATH  Google Scholar 

  • Shen J, Singler JR, Zhang YW (2019) HDG-POD reduced order model of the heat equation. J Comput Appl Math 362:663–679

    Article  MathSciNet  MATH  Google Scholar 

  • Tao Q, Xu Y, Li XZ (2022) Negative norm estimates for arbitrary Lagrangian–Eulerian discontinuous Galerkin method for nonlinear hyperbolic equations. Commun Appl Math Comput 4:250–270

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang W, Xia Y, Xu Y (2021) Positivity-preserving well-balanced arbitrary Lagrangian–Eulerian discontinuous Galerkin methods for the shallow water equations. J Sci Comput 88:1–43

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu L, Huang TZ, Li L (2017) A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell’s equations. Appl Math Lett 68:109–116

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu J, Shu CW, Qiu J (2021) High-order Runge–Kutta discontinuous Galerkin methods with multi-resolution WENO limiters for solving steady-state problems. Appl Numer Math 165:482–499

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingzhi Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is part supported by the NSF of China (No. 11861054), the Natural science Foundation of Guangxi (No. 2020GXNSFAA297223), the NSF of China (Nos. U19A2079, 11671345 and 11771348).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ye, Y., Zhu, D. et al. Hybridizable discontinuous Galerkin reduced order model for the variable coefficient advection equation. Comp. Appl. Math. 42, 263 (2023). https://doi.org/10.1007/s40314-023-02396-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02396-6

Keywords

Mathematics Subject Classification

Navigation