Skip to main content
Log in

The Moore–Penrose inverse of tensors via the M-product

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper studies the issues about the Moore–Penrose inverse of tensors with the M-product. The goal of this paper is threefold. Firstly, we define the Moore–Penrose inverse of tensors under the M-product, and obtain several formulas for the Moore–Penrose inverse of tensors. In addition, we study the least square and minimum-norm solutions of the tensor equation. The conditions for the solutions to be the least square or minimum-norm solutions are given. Finally, we discuss the necessary and sufficient conditions for the reverse order law of the generalized inverses of tensors based on the M-product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behera R, Mishra D (2017) Further results on generalized inverses of tensors via the Einstein product. Linear Multilinear Algebra 65(8):1662–1682

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Israel A, Greville T (2003) Generalized inverse: theory and applications, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Cao Z, Xie P (2022) Perturbation analysis for t-product-based tensor inverse, Moore-Penrose inverse and tensor system, Communications on. Appl Math Comput 4(4):1441–1456

    MathSciNet  MATH  Google Scholar 

  • Cao Z, Xie P (2023) On some tensor inequalities based on the t-product. Linear Multilinear Algebra 71(3):377–390

    Article  MathSciNet  MATH  Google Scholar 

  • Che M, Wei Y (2022) An efficient algorithm for computing the approximate t-URV and its applications. J Sci Comput 92:93. https://doi.org/10.1007/s10915-022-01956-y

    Article  MathSciNet  MATH  Google Scholar 

  • Che M, Wang X, Wei Y, Zhao X (2022) Fast randomized tensor singular value thresholding for low-rank tensor optimization. Num Linear Algebra Appl 29(6):e2444

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Ma W, Miao Y, Wei Y (2023) Perturbations of Tensor-Schur decomposition and its applications to multilinear control systems and facial recognitions. Neurocomputing 547:126359

    Article  Google Scholar 

  • Comon P (2002) Tensor decompositions. In: McWhirter JG, Proudler IK (eds) Mathematics in Signal Processing V. Clarendon Press, Oxford, UK, pp 1–24

    Google Scholar 

  • Cong Z, Ma H (2022) Acute perturbation for Moore-Penrose inverses of tensors via the T-product. J Appl Math Comput 68(6):3799–3820

    Article  MathSciNet  MATH  Google Scholar 

  • Cong Z, Ma H (2022) Characterizations and perturbations of the core-EP inverse of tensors based on the T-product. Numer Funct Anal Optim 43(10):1150–1200

    Article  MathSciNet  MATH  Google Scholar 

  • De Lathauwer L, De Moor B (1998) From matrix to tensor: multilinear algebra and signal processing. In: McWhirter J, Proudler IK (eds) Mathematics in signal processing IV. Clarendon Press, Oxford, UK, pp 1–15

    Google Scholar 

  • Han F, Miao Y, Sun Z, Wei Y (2023) T-ADAF: adaptive data augmentation framework for image classification network based on tensor T-product operator. Neural Process Lett. https://doi.org/10.1007/s11063-023-11361-7

    Article  Google Scholar 

  • Hao N, Kilmer M, Braman K, Hoover R (2013) Facial recognition using tensor-tensor decompositions. SIAM J Imaging Sci 6:437–463

    Article  MathSciNet  MATH  Google Scholar 

  • Ji J, Wei Y (2018) The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput Math Appl 75(9):3402–3413

    Article  MathSciNet  MATH  Google Scholar 

  • Jin H, Bai M, Benítez J, Liu X (2017) The generalized inverses of tensors and an application to linear models. Comput Math Appl 74:385–397

    Article  MathSciNet  MATH  Google Scholar 

  • Kernfeld E, Kilmer M, Aeron S (2015) Tensor-tensor products with invertible linear transforms. Linear Algebra Appl 485:545–570

    Article  MathSciNet  MATH  Google Scholar 

  • Kilmer M, Martin C (2011) Factorization strategies for third-order tensors. Linear Algebra Appl 434:641–658

    Article  MathSciNet  MATH  Google Scholar 

  • Kilmer M, Braman K, Hao N, Hoover RC (2013) Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J Matrix Anal Appl 34:148–172

    Article  MathSciNet  MATH  Google Scholar 

  • Kilmer M, Horesh L, Avron H, Newman E (2020) Tensor-tensor products for optimal representation and compression. arXiv:2001.00046

  • Kolda T, Bader B (2009) Tensor decompositions and applications. SIAM Rev 51:455–500

    Article  MathSciNet  MATH  Google Scholar 

  • Krushnachandra P, Ratikanta B, Debasisha M (2020) Reverse order law for the Moore-Penrose inverses of tensors. Linear Multilinear Algebra 68:246–264

    Article  MathSciNet  MATH  Google Scholar 

  • Liang M, Zheng B (2019) Further results on Moore-Penrose inverses of tensors with application to tensor nearness problems. Comput Math Appl 77(5):1282–1293

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Ma H (2022) Weighted generalized tensor functions based on the tensor-product and their applications. Filomat 36(18):6403–6426

    Article  MathSciNet  Google Scholar 

  • Liu Y, Ma H (2022) Dual core generalized inverse of third-order dual tensor based on the T-product. Comput Appl Math 41(8). https://doi.org/10.1007/s40314-022-02114-8

  • Martin C, Shafer R, LaRue B (2013) An order-\(p\) tensor factorization with applications in imaging. SIAM J Sci Comput 35:474–490

    Article  MathSciNet  MATH  Google Scholar 

  • Miao Y, Qi L, Wei Y (2020) Generalized tensor function via the tensor singular value decomposition based on the T-product. Linear Algebra Appl 590:258–303

    Article  MathSciNet  MATH  Google Scholar 

  • Miao Y, Qi L, Wei Y (2021) T-Jordan canonical form and T-Drazin inverse based on the T-product. Com. Appl. Math. Comput. 3:201–220

    Article  MathSciNet  MATH  Google Scholar 

  • Miao Y, Wang T, Wei Y (2023) Stochastic conditioning of tensor functions based on the tensor-tensor product. Pac. J. Optim. 19(2):205–235

    MathSciNet  MATH  Google Scholar 

  • Mo C, Wang X, Wei Y (2020) Time-varying generalized tensor eigenanalysis via Zhang neural networks. Neurocomputing 407:465–479

    Article  Google Scholar 

  • Mo C, Ding W, Wei Y (2023) Perturbation analysis on T-eigenvalues of third-order tensors. arXiv:2108.09502v2

  • Nagy J, Kilmer M (2006) Kronecker product approximation for preconditioning in three dimensional imaging applications. IEEE Trans Image Process 15:604–613

    Article  MathSciNet  Google Scholar 

  • Newman E, Horesh L, Avron H, Kilmer M (2018) Stable tensor neural networks for rapid deep learning. arXiv:1811.06569

  • Reichel L, Ugwu O (2021) Tensor Krylov subspace methods with an invertible linear transform product applied to image processing. Appl Numer Math 166:186–207

    Article  MathSciNet  MATH  Google Scholar 

  • Rezghi M, Eldén L (2011) Diagonalization of tensors with circulant structure. Linear Algebra Appl 435:422–447

    Article  MathSciNet  MATH  Google Scholar 

  • Sahoo JK, Behera R, Stanimirović PS, Katsikis VN, Ma H (2020) Core and core-EP inverses of tensors. Comput Appl Math 39(9). https://doi.org/10.1007/s40314-019-0983-5

  • Shao X, Wei Y, Yuan J (2023) Nonsymmetric Algebraic Riccati Equations under the Tensor Product. Numer Funct Anal Optim 44(6):545–563

    Article  MathSciNet  MATH  Google Scholar 

  • Sidiropoulos N, Bro R, Giannakis G (2000) Parallel factor analysis in sensor array processing. IEEE Trans Signal Process 48:2377–2388

    Article  Google Scholar 

  • Sun L, Zheng B, Bu C, Wei Y (2016) Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra 64(4):686–698

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Che M, Wei Y (2020) Tensor neural network models for tensor singular value decompositions. Comput Optim Appl 75(3):753–777

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Che M, Wei Y (2022) Randomized Kaczmarz methods for tensor complementarity problems. Comput Optim Appl 82:595–615

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Mo C, Qiao S, Wei Y (2022) Predefined-time convergent neural networks for solving the time-varying nonsingular multi-linear tensor equations. Neurocomputing 472:68–84

    Article  Google Scholar 

  • Wang X, Che M, Mo C, Wei Y (2023) Solving the system of nonsingular tensor equations via randomized Kaczmarz-like method. J Comput Appl Math 421:114856

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Wei P, Wei Y (2023) A Fixed Point Iterative Method for Third-order Tensor Linear Complementarity Problems. J Optim Theory Appl 197(1):334–357

    Article  MathSciNet  MATH  Google Scholar 

  • Wei P, Wang X, Wei Y (2023) Neural network models for time-varying tensor complementarity problems. Neurocomputing 523:18–32

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments, which have significantly improved the paper.

Funding

This work was supported by Talent Introduction and Scientific Research Start-Up Project of Guangxi Minzu University (No.2021KJQD02), the Special Fund for Science and Technological Bases and Talents of Guangxi (No. GUIKE21220024), the National Natural Science Foundation of China (No.12061015), the National Natural Science Foundation of China (No. 11571098) and the Guangxi Natural Science Foundation (No.2018GXNS FDA281023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Jin.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Communicated by yimin wei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Xu, S., Wang, Y. et al. The Moore–Penrose inverse of tensors via the M-product. Comp. Appl. Math. 42, 294 (2023). https://doi.org/10.1007/s40314-023-02427-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02427-2

Keywords

Mathematics Subject Classification

Navigation