Skip to main content
Log in

The characteristic difference DDM for solving the time-fractional order convection–diffusion equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, an efficient characteristic difference domain decomposition method for solving the time-fractional order convection–diffusion equations is developed. A three-step method is used to solve the solution over non-overlapping sub-domain at every time interval. The new solutions are first solved by the the quadratic interpolation. Then, the intermediate fluxes on the interfaces of sub-domains are computed by local multi-point weighted average from the above new solutions. Finally, the solutions and fluxes in the interiors of sub-domains are computed by the implicit characteristic difference method, while the time fractional derivative is approximated by L1-format. By combining the operator splitting technique, we further propose an efficient splitting domain decomposition method for solve the two-dimensional problems. By some auxiliary lemmas, the stability and error estimate are given in discrete \(L^2\)-norm. We further prove that our scheme is of second-order convergence in space and of first-order convergence in time. Numerical experiments are presented to validate theoretical result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  • Alikhanov A (2015) A new difference scheme for the time fractional diffusion equation. J Comput Phys 280:424–438

    MathSciNet  MATH  Google Scholar 

  • Cao G, Sun H, Sun Z (2015) Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J Comput Phys 280:510–528

    MathSciNet  MATH  Google Scholar 

  • Chen M, Deng W (2014) Fourth order accurate scheme for the space fractional diffusion equations. SIAM J Numer Anal 52:1418–1438

    MathSciNet  MATH  Google Scholar 

  • Chen C, Liu H, Zheng X, Wang H (2020) A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile-immobile advection-diffusion equations. Comput Math Appl 79:2771–2783

    MathSciNet  MATH  Google Scholar 

  • Deng W, Li B, Tian W, Zhang P (2018) Boundary problems for the fractional and tempered fractional operators. Multiscale Model Simul 16:125–149

    MathSciNet  MATH  Google Scholar 

  • Deng W, Wang X, Zhang P (2020) Anisotropic nonlocal diffusion operators for normal and anomalous dynamics. Multiscale Model Simul 18:415–443

    MathSciNet  MATH  Google Scholar 

  • Ding H, Li C, Chen Y (2015) High-order algorithms for Riesz derivative and their applications (II). J Comput Phys 293:218–237

    MathSciNet  MATH  Google Scholar 

  • Du Q, Mu M, Wu Z (2001) Efficient parallel algorithms for parabolic problems. SIAM J Numer Anal 39:1469–1487

    MathSciNet  MATH  Google Scholar 

  • Du Q, Gunzburger M, Lehoucq R, Zhou K (2012) Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev 54:667–696

    MathSciNet  MATH  Google Scholar 

  • Feng L, Zhuang P, Liu F, Turner I, Gu Y (2016) Finite element method for space-time fractional diffusion equation. Numer Algorithm 72:749–767

    MathSciNet  MATH  Google Scholar 

  • Fu K, Liang D (2016) The conservative characteristic FD methods for atmospheric aerosol transport problems. J Comput Phys 305:494–520

    MathSciNet  MATH  Google Scholar 

  • Fu K, Liang D (2017) The time second order mass conservative characteristic FDM for advection-diffusion equations in high dimensions. J Sci Comput 73:26–49

    MathSciNet  MATH  Google Scholar 

  • Fu K, Liang D (2019) A mass-conservative temporal second order and spatial fourth order characteristic finite volume method for atmosphertic pollution advection diffusion problems. SIAM J Sci Comput 41:1178–1210

    MathSciNet  Google Scholar 

  • Gao G, Sun Z, Zhang H (2014) A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J Comput Phys 259:33–50

    MathSciNet  MATH  Google Scholar 

  • Hang T, Zhou Z, Pan H, Wang Y (2023) The conservative characteristic difference method and analysis for solving two-sided space-fractional advection-diffusion equations. Numer Algorithms 92:1723–1755

    MathSciNet  MATH  Google Scholar 

  • Jia J, Wang H (2015) A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J Comput Phys 299:842–862

    MathSciNet  MATH  Google Scholar 

  • Jia J, Wang H (2016) A fast finite volume method for conservative space-fractional diffusion equations in convex domains. J Comput Phys 310:63–84

    MathSciNet  MATH  Google Scholar 

  • Jiang W, Liu N (2017) A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model. Appl Numer Math 119:18–32

    MathSciNet  MATH  Google Scholar 

  • Kamran K, Irfan M, Shah K et al (2023) RBF-Based local meshless method for fractional diffusion equations. Fract Fract. https://doi.org/10.3390/fractalfract7020143

    Article  Google Scholar 

  • Khan A, Shah K, Abdeljawad T, Sher M (2022) On fractional order Sine-Gordon equation involving nonsingular derivative. Fractals. https://doi.org/10.1142/S0218348X23400078

    Article  Google Scholar 

  • Koyunbakan H, Shah K, Abdeljawad T (2023) Well-posedness of inverse Sturm-Liouville problem with fractional derivative. Qual Theory Dyn Syst 22:23

    MathSciNet  MATH  Google Scholar 

  • Li X, Rui H (2017) A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation. J Sci Comput 72:863–891

    MathSciNet  MATH  Google Scholar 

  • Li C, Yuan Y (2009) A modified upwind difference domain decomposition method for convection-diffusion equations. Appl Numer Math 59:1584–1598

    MathSciNet  MATH  Google Scholar 

  • Li R, Zhou Z, Li L (2020) The mass-preserving domain decomposition scheme for solving three-dimensional convection-diffusion equations. Math Comput Simulat 177:527–555

    MathSciNet  MATH  Google Scholar 

  • Li B, Liang H, He Q (2021) Multiple and generic bifurcation analysis of a discrete Hindmarsh–Rose model. Chaos Solit Fract 146:110856

    MathSciNet  MATH  Google Scholar 

  • Li B, Liang H, Shi L, He Q (2022) Complex dynamics of Kopel model with nonsymmetric response between oligopolists. Chaos Solit Fract 156:111860

    MathSciNet  MATH  Google Scholar 

  • Liu Z, Li X (2016) A parallel CGS block-centered finite difference method for nonlinear time-fractional parabolic equation. Comput Methods Appl Mech Eng 308:330–348

    MathSciNet  MATH  Google Scholar 

  • Liu F, Zhuang P, Turner I, Burrage K, Anh V (2014) A new fractional finite volume method for solving the fractional diffusion equation. Appl Math Model 38:3871–3878

    MathSciNet  MATH  Google Scholar 

  • Ma K, Sun T (2018) A non-overlapping DDM combined with the characteristic method for optimal control problems governed by convection-diffusion equations. Comput Optim Appl 71:273–306

    MathSciNet  MATH  Google Scholar 

  • Nie D, Sun J, Deng W (2020) Numerical algorithm for the model describing anomalous diffusion in expanding media. ESAIM Math Model Numer Anal 54:2265–2294

    MathSciNet  MATH  Google Scholar 

  • Roul P, Rohil V (2022) A novel high-order numerical scheme and its analysis for the two-dimensional time-fractional reaction-subdiffusion euqation. Numer Algorithms 90:1357–1387

    MathSciNet  MATH  Google Scholar 

  • Salomoni V, De Marchi N (2022) Numerical solutions of space-fractional advection-diffusion-reaction equations. Fractal Fract 6:21

    Google Scholar 

  • Salomoni V, De Marchi N (2022) A fractional approach to fluid flow and solute transport within deformable saturated porous media. Int J Comput Mater Sci Eng 11:2250003

    Google Scholar 

  • Shah K, Abdeljawad T (2023) Study of a mathematical model of COVID-19 outbreak using some advanced analysis. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2149890

    Article  Google Scholar 

  • Shah K, Abdalla B, Abdeljawad T, Gul R (2023) Analysis of multipoint impulsive problem of fractional-order differential equations. Bound Value Probl. https://doi.org/10.1186/s13661-022-01688-w

    Article  MathSciNet  MATH  Google Scholar 

  • Shah K, Abdeljawad T, Jarad F, Al-Mdallal Q (2023) On nonlinear conformable fractional order dynamical system via differential transform method. Comput Model Eng Sci 136:1457–1472

    Google Scholar 

  • Shi H, Liao H (2006) Unconditional stability of corrected explicit/implicit domain decomposition algorithms for parallel approximation of heat equations. SIAM J Numer Anal 44:1584–1611

    MathSciNet  MATH  Google Scholar 

  • Simmons A, Yang Q, Moroney T (2017) A finite volume method for two-sided fractional diffusion equations on non-uniform meshes. J Comput Phys 335:747–759

    MathSciNet  MATH  Google Scholar 

  • Tian W, Zhou H, Deng W (2015) A class of second order difference approximations for solving space fractional diffusion equations. Math Comput 84:1703–1727

    MathSciNet  MATH  Google Scholar 

  • Vong S, Lyu P, Chen X et al (2015) High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives. Numer Algorithms 72:195–210

    MathSciNet  MATH  Google Scholar 

  • Wang H, Yang D (2013) Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J Numer Anal 51:1088–1107

    MathSciNet  MATH  Google Scholar 

  • Wu X, Deng W, Barkai E (2016) Tempered fractional Feynman–Kac equation: theory and examples. Phys Rev E 93:032151

    MathSciNet  Google Scholar 

  • Yuan G, Sheng Z (2004) Stability and convergence of the explicit-implicit conservative domain decomposition procedure for parabolic problems. Comput Math Appl 47:793–801

    MathSciNet  MATH  Google Scholar 

  • Zeng F, Zhang Z, Arniadakis G (2015) A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J Sci Comput 37:2710–2732

    MathSciNet  Google Scholar 

  • Zhang H, Liu F, Phanikumar M, Meerschaert M (2013) A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput Math Appl 66:693–701

    MathSciNet  MATH  Google Scholar 

  • Zhang J, Yang D, Guo H et al (2017) Parallel algorithm combined with mixed element procedure for compressible miscible displacement problem. Numer Algorithms 76:1–27

    MathSciNet  MATH  Google Scholar 

  • Zhang J, Yang D, Zhu J (2018) Parallel characteristic mixed element method for saltwater intrusion problem. J Comput Appl Math 336:160–174

    MathSciNet  MATH  Google Scholar 

  • Zhou Z, Liang D (2017) The mass-preserving and modified-upwind splitting DDM scheme for time-dependent convection diffusion equations. J Comput Appl Math 317:247–273

    MathSciNet  MATH  Google Scholar 

  • Zhou Z, Liang D, Wong Y (2018) The new mass-conserving S-DDM scheme for two-dimensional parabolic equations with variable coefficients. Appl Math Comput 338:882–902

    MathSciNet  MATH  Google Scholar 

  • Zhou Z, Sun X, Pan H, Wang Y (2020) An efficient characteristic finite difference S-DDM scheme for convection-diffusion equations. Comput Math Appl 80:3044–3065

    MathSciNet  MATH  Google Scholar 

  • Zhuang Y, Sun X (2002) Stabilized explicit-implicit domain decomposition methods for the numerical solution of parabolic equations. SIAM J Sci Comput 24:335–358

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Grant No. 61703250), Natural Science Foundation of Shandong Government (Grant No. ZR2021MA002), and Shandong Agricultural University (Grant No. xxxy201704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongguo Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Wang, N., Pan, H. et al. The characteristic difference DDM for solving the time-fractional order convection–diffusion equations. Comp. Appl. Math. 42, 289 (2023). https://doi.org/10.1007/s40314-023-02429-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02429-0

Keywords

Mathematics Subject Classification

Navigation