Skip to main content
Log in

On extended, and extended rectangular, Menger probabilistic b-metric spaces: applications to the existence of solutions of integral, and fractional differential, equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We introduce the notions of extended Menger probabilistic b-metric space and extended rectangular Menger probabilistic b-metric space. Thereafter, we obtain new fixed-point results for single- and multi-valued mappings in both spaces. Additionally, we present two applications, involving integral, and fractional differential, equations, proving the existence of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Asim M, Imdad M, Radenovic S (2019) Fixed point results in extended rectangular \(b\)-metric spaces with an application. UPB Sci Bull, Ser A 81(2):11–20

    MathSciNet  MATH  Google Scholar 

  • Bakhtin I (1989) The contraction mapping in almost metric spaces. Funct Ana Gos Ped Inst Unianowsk 30:26–37

    MathSciNet  MATH  Google Scholar 

  • Banach S (1922) Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam Math 3(1):133–181

    MATH  Google Scholar 

  • Banaei S, Mursaleen M, Parvaneh V (2020) Some fixed point theorems via measure of noncompactness with applications to differential equations. Comput Appl Math 39:1–12

    MathSciNet  MATH  Google Scholar 

  • Bharucha-Raid A, Sehgal V (1972) Fixed point of contraction mappings on pm-spaces. Math Syst Theory 6:97–100

    MATH  Google Scholar 

  • Branciari A (2000) A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ Math 57:31–37

    MathSciNet  MATH  Google Scholar 

  • Burke DK (1972) Cauchy sequences in semimetric spaces. Proc Am Math Soc 33(1):161–164

    MathSciNet  MATH  Google Scholar 

  • Chaharpashlou R (2021) Best approximation of a nonlinear fractional Volterra integro-differential equation in matrix MB-space. Adv Differ Equ 1:1–12

    MathSciNet  MATH  Google Scholar 

  • Chaharpashlou R, O’Regan D, Park C et al (2020) (2020a) \(c^*\)-algebra valued fuzzy normed spaces with application of Hyers–Ulam stability of a random integral equation. Adv Differ Equ 1:1–9

    MATH  Google Scholar 

  • Chaharpashlou R, Saadati R, Atangana A (2020) Ulam–Hyers–Rassias stability for nonlinear \(\psi \)-Hilfer stochastic fractional differential equation with uncertainty. Adv Differ Equ 1:1–10

    MathSciNet  MATH  Google Scholar 

  • Choudhury BS, Das K (2008) A new contraction principle in Menger spaces. Acta Math Sin English Ser 24(8):1379–1386

    MathSciNet  MATH  Google Scholar 

  • Ćirić L (2010) Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces. Nonlinear Anal Theory Methods Appl 72(3–4):2009–2018

    MathSciNet  MATH  Google Scholar 

  • Ćirić LB (1974) A generalization of Banach’s contraction principle. Proc Am Math Soc 45(2):267–273

    MathSciNet  MATH  Google Scholar 

  • Ćirić LB, Miheţ D, Saadati R (2009) Monotone generalized contractions in partially ordered probabilistic metric spaces. Topology and its Applications 156(17):2838–2844

    MathSciNet  MATH  Google Scholar 

  • Czerwik S (1993) Contraction mappings in \(b\)-metric spaces. Acta Math Inform Univ Ostraviensis 1(1):5–11

    MathSciNet  MATH  Google Scholar 

  • George R, Radenovic S, Reshma K et al (2015) Rectangular \(b\)-metric space and contraction principles. J Nonlinear Sci Appl 8(6):1005–1013

    MathSciNet  MATH  Google Scholar 

  • Ghasab EL, Majani H, Karapinar E et al (2020) New fixed point results in-quasi-metric spaces and an application. Adv Math Phys 20:20

    MathSciNet  MATH  Google Scholar 

  • Ghasab EL, Chaharpashlou R, Lopes AM (2022) Solving a system of integral equations in rectangular Menger probabilistic metric spaces and rectangular Menger probabilistic \(b\)-metric spaces. Symmetry 15(1):70

    Google Scholar 

  • Gopal D, Abbas M, Vetro C (2014) Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation. Appl Math Comput 232:955–967

    MathSciNet  MATH  Google Scholar 

  • Hadžić O, Pap E (2001) Fixed point theory in probabilistic metric spaces, vol 536. Springer, Dordrecht

    MATH  Google Scholar 

  • Hasanvand F (2015) Some fixed point theorems in Menger PbM-spaces with an application. Fixed Point Theory Appl 1:1–18

    MathSciNet  MATH  Google Scholar 

  • Jachymski J (2010) On probabilistic \(\varphi \)-contractions on Menger spaces. Nonlinear Anal Theory Methods Appl 73(7):2199–2203

    MathSciNet  MATH  Google Scholar 

  • Kamran T, Samreen M, UL Ain Q (2017) A generalization of \(b\)-metric space and some fixed point theorems. Mathematics 5(2):19

    MathSciNet  MATH  Google Scholar 

  • Kirk W, Shahzad N (2014) Fixed point theory in distance spaces. Springer, Cham

    MATH  Google Scholar 

  • Xl Liu, Zhou M, Mishra LN et al (2018) Common fixed point theorem of six self-mappings in Menger spaces using (CLR_ST) property. Open Math 16(1):1423–1434

    MathSciNet  MATH  Google Scholar 

  • Lotfali GE, Hamid M, Soleimani RG (2021) Fixed points of set-valued \(f\)-contraction operators in quasi-ordered metric spaces with an application to integral equations. J Siberian Federal Univ Math Phys 14(2):150–158

    MathSciNet  MATH  Google Scholar 

  • Lotfali Ghasab E, Majani H, De la Sen M et al (2020) \(e\)-distance in Menger PGM spaces with an application. Axioms 10(1):3

    Google Scholar 

  • Lotfali Ghasab E, Majani H, Soleimani Rad G (2020) Integral type contraction and coupled fixed point theorems in ordered \(g\)-metric spaces. J Linear Topol Algebra (JLTA) 9(02):113–120

    MATH  Google Scholar 

  • Maagli H (2001) On the solutions of a singular nonlinear periodic boundary value problem. Potential Anal 14(4):437–447

    MathSciNet  MATH  Google Scholar 

  • Menger K (1942) Statistical metrics. Proc Natl Acad Sci USA 28(12):535–537

    MathSciNet  MATH  Google Scholar 

  • Metwali M, Mishra VN (2023) On the measure of noncompactness in \(l_p({\mathbb{R} }^+)\) and applications to a product of \(n\)-integral equations. Turk J Math 47(1):372–386

    MATH  Google Scholar 

  • Mihet D (2005) Multivalued generalisations of probabilistic contractions. J Math Anal Appl 304:464–472

    MathSciNet  MATH  Google Scholar 

  • Mishra LN, Pathak VK, Baleanu D (2022) Approximation of solutions for nonlinear functional integral equations. AIMS Math 7:17,486-17,506

    MathSciNet  Google Scholar 

  • Pathak V, Mishra L (2023) Existence of solution of Erdélyi–Kober fractional integral equations using measure of non-compactness. Discontin Nonlinearity Complex 12:701–714

    Google Scholar 

  • Pathak VK, Mishra LN (2022) Application of fixed point theorem to solvability for non-linear fractional Hadamard functional integral equations. Mathematics 10(14):2400

    Google Scholar 

  • Pathak VK, Mishra LN, Mishra VN et al (2022) On the solvability of mixed-type fractional-order non-linear functional integral equations in the Banach space C(I). Fract Fract 6(12):744

    Google Scholar 

  • Pathak VK, Mishra LN, Mishra VN (2023) On the solvability of a class of nonlinear functional integral equations involving erdélyi-Kober fractional operator. Math Methods Appl Sci 10:1–13

    Google Scholar 

  • Paul SK, Mishra LN, Mishra VN et al (2023) An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator. AIMS Math 8(8):17,448-17,469

    MathSciNet  Google Scholar 

  • Precup R, Rubbioni P (2022) Stationary solutions of Fokker–Planck equations with nonlinear reaction terms in bounded domains. Potential Anal 57(2):181–199

    MathSciNet  MATH  Google Scholar 

  • Rahimi H, Rad GS (2013) Fixed point theory in various spaces: comparison between various contractions. LAP Lambert Academic Publishing, London

    Google Scholar 

  • Reilly IL, Subrahmanyam P, Vamanamurthy M (1982) Cauchy sequences in quasi-pseudo-metric spaces. Monatshefte für Mathematik 93(2):127–140

    MathSciNet  MATH  Google Scholar 

  • Sadeghi Z, Vaezpour S (2018) Fixed point theorems for multivalued and single-valued contractive mappings on Menger PM spaces with applications. J Fixed Point Theory Appl 20(3):1–27

    MathSciNet  MATH  Google Scholar 

  • Sanatee AG, Rathour L, Mishra VN et al (2023) Some fixed point theorems in regular modular metric spaces and application to Caratheodory’s type anti-periodic boundary value problem. J Anal 31(1):619–632

    MathSciNet  MATH  Google Scholar 

  • Schweizer B, Sklar A (2011) Probabilistic metric spaces. Courier Corporation, New York

    MATH  Google Scholar 

  • Torres DF, Malinowska AB (2012) Introduction to the fractional calculus of variations. World Scientific Publishing Company, Singapore

    MATH  Google Scholar 

Download references

Funding

This work received no funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and reviewed the manuscript text.

Corresponding author

Correspondence to António M. Lopes.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Herein, non-trivial examples are given for Theorems 1 and 2. Additionally, examples concerning eMPbM and eRMPbM spaces are provided.

Example 1

Let us consider \({\mathcal {Q}} = \{1,2,3\}\), \({\mathcal {T}}(\zeta ,\varsigma )=\min \{\zeta ,\varsigma \}\), and \(\epsilon (\zeta ,\varsigma )=\frac{1}{\zeta +\varsigma }\). Also, let us introduce \({\mathbb {E}}^{e}: {\mathcal {Q}} \times {\mathcal {Q}} \rightarrow D^{+}\) as

$$\begin{aligned} {\mathbb {E}}^{e}_{ \zeta ,\varsigma } (t) ={\left\{ \begin{array}{ll} \frac{t}{t+\vert \zeta -\varsigma \vert ^{2}}, \quad \text{ if } t>0, \\ 0,\quad \text{ otherwise }, \end{array}\right. } \end{aligned}$$

where \(\alpha \ge \beta >1\). We can show that \({\mathbb {E}}^{e}\) is an eMPbM.

Conditions (Ee1) and (Ee2) are trivial. Let \(t=1\) and \(s=2\). For (Ee3), we get

$$\begin{aligned} {\mathbb {E}}^{e}_{1,3}(t+s)=\frac{1+2}{1+2+\vert 1-3\vert ^{2}} \ge \min \{{\mathbb {E}}^{e}_{1,2}(\epsilon (1,3)t), {\mathbb {E}}^{e}_{2,3}(\epsilon (1,3)s)\}=\frac{(1+3)^{-1}}{(1+3)^{-1}+1}. \end{aligned}$$

For other cases, we can proceed in a similar way. Therefore, for every \(\zeta ,\varsigma \in {\mathcal {Q}}\) with distinct \(u,v \in {\mathcal {Q}} {\setminus } \{\zeta ,\varsigma \}\), we obtain

$$\begin{aligned} {\mathbb {E}}^{e}_{ \zeta ,\varsigma }(t+s)\ge {\mathcal {T}}({\mathbb {E}}^{e}_{ \zeta ,u}(\epsilon (\zeta ,\varsigma ) t),{\mathbb {E}}^{e}_{ u,v}(\epsilon (\zeta ,\varsigma )s)). \end{aligned}$$

Thus, \(({\mathcal {Q}},{\mathbb {E}}^{e},{\mathcal {T}})\) is an eMPbM-space. Nevertheless, it is not an MPM-space, because

$$\begin{aligned} {\mathbb {E}}^{e}_{1,3}(t+s)=\frac{1+2}{1+2+\vert 1-3\vert ^{2}} \le \min \{{\mathbb {E}}^{e}_{1,2}(t),{\mathbb {E}}^{e}_{2,3}(s)\}=\frac{1}{1+\vert 1-2\vert ^{2}}. \end{aligned}$$

Example 2

Let us suppose that \({\mathcal {Q}} ={\mathbb {R}}^{+}\), \({\mathcal {T}}(\zeta ,\varsigma )=\min \{\zeta ,\varsigma \}\) and \({\mathbb {E}}^{e}: {\mathcal {Q}} \times {\mathcal {Q}} \rightarrow D^{+}\) is

$$\begin{aligned} {\mathbb {E}}^{e}_{ \zeta ,\varsigma } (t) ={\left\{ \begin{array}{ll} \frac{t}{t+\vert \zeta -\varsigma \vert ^{2}}, \quad \text{ if } t>0 \\ 0\quad \text{ otherwise }, \end{array}\right. } \end{aligned}$$

for every \(\zeta ,\varsigma \in {\mathcal {Q}}\) and \(\epsilon (\zeta ,\varsigma )=\frac{1}{\zeta +\varsigma }\) (Hasanvand and Khanehgir 2015). Let us introduce the function \(\varpi : {\mathcal {Q}} \rightarrow {\mathcal {Q}}\) with \(\varpi \zeta =\frac{\zeta }{4}\) and \(\varphi : {\mathbb {R}}^{ +}\rightarrow {\mathbb {R}}^{ +}\) with \(\varphi (t) = t\). Also, let us set \(c=\frac{1}{2}\) and \(\lambda =1\). From

$$\begin{aligned} {\mathbb {E}}^{e}_{\varpi \zeta ,\varpi \varsigma }(\epsilon (\zeta ,\varsigma )^{k}\varphi (t))&\ge \lambda \min \lbrace {\mathbb {E}}^{e}_{\zeta ,\varsigma }(\epsilon (\zeta ,\varsigma )^{k-1}\varphi (\frac{t}{c}),\\&\quad {\mathbb {E}}^{e}_{\zeta ,\varpi \zeta }(\epsilon (\zeta ,\varsigma )^{k-1}\varphi (\frac{t}{c}), {\mathbb {E}}^{e}_{\varpi \varsigma ,\varsigma }(\epsilon (\zeta ,\varsigma )^{k-1}\varphi (\frac{t}{c})\rbrace , \end{aligned}$$

we obtain

$$\begin{aligned} {\mathbb {E}}^{e}_{\varpi \zeta ,\varpi \varsigma }(\epsilon (\zeta ,\varsigma )^{k}\varphi (t))&=\frac{\frac{1}{(\zeta +\varsigma )^{k}}t}{\frac{1}{(\zeta +\varsigma )^{k}}t +\vert \frac{\zeta }{4}-\frac{\varsigma }{4}\vert ^{2}} =\frac{t}{t+(\zeta +\varsigma )^{k-4}\vert \zeta -\varsigma \vert ^{2}}\\&\ge \frac{t}{t+(\zeta +\varsigma )^{k-2}\vert \zeta -\varsigma \vert ^{2}}\\&={\mathbb {E}}^{e}_{\zeta ,\varsigma } (\epsilon (\zeta ,\varsigma )^{k-1}\varphi (\frac{t}{c}))\\&\ge \min \lbrace {\mathbb {E}}^{e}_{\zeta ,\varsigma } (\epsilon (\zeta ,\varsigma )^{k-1}\varphi (\frac{t}{c}), {\mathbb {E}}^{e}_{\zeta ,\varpi \zeta }(\epsilon (\zeta ,\varsigma )^{k-1}\varphi (\frac{t}{c}),\\&\quad {\mathbb {E}}^{e}_{\varpi \varsigma ,\varsigma } (\epsilon (\zeta ,\varsigma )^{k-1}\varphi (\frac{t}{c})\rbrace \\&=\lambda \min \lbrace {\mathbb {E}}^{e}_{\zeta ,\varsigma } (\epsilon (\zeta ,\varsigma )^{k-1}\varphi (\frac{t}{c}),{\mathbb {E}}^{e}_{\zeta ,\varpi \zeta } (\epsilon (\zeta ,\varsigma )^{k-1}\varphi (\frac{t}{c}),\\ {}&\qquad {\mathbb {E}}^{e}_{\varpi \varsigma ,\varsigma } (\epsilon (\zeta ,\varsigma )^{k-1}\varphi (\frac{t}{c})\rbrace . \end{aligned}$$

Thus, Theorem 1 implies that \(\varpi \) has a FP.

Example 3

Let us consider \({\mathcal {Q}} = \{1,2,3,4\}\), \({\mathcal {T}}(\zeta ,\varsigma )=\min \{\zeta ,\varsigma \}\), and \(\epsilon (\zeta ,\varsigma )=\frac{1}{\zeta +\varsigma }\). Also, let us introduce \({\mathbb {E}}^{\zeta }: {\mathcal {Q}} \times {\mathcal {Q}} \rightarrow D^{+}\) as

$$\begin{aligned} {\mathbb {E}}^{\zeta }_{ \zeta ,\varsigma } (t) = 1 \ if\ \zeta =\varsigma ,\\ {\mathbb {E}}^{\zeta }_{\zeta ,\varsigma }(t) ={\mathbb {E}}^{\zeta }_{\varsigma ,\zeta }(t)\ for \ all\ \zeta ,\varsigma \in {\mathcal {Q}},\\ {\mathbb {E}}^{\zeta }_{1,2}(t)=\frac{t}{t+\alpha },\\ {\mathbb {E}}^{\zeta }_{1,4}(t)={\mathbb {E}}^{\zeta }_{2,4}(t) ={\mathbb {E}}^{\zeta }_{3,4}(t)=\frac{t}{t+4\alpha },\\ {\mathbb {E}}^{\zeta }_{1,3}(t)={\mathbb {E}}^{\zeta }_{2,3}(t) =\frac{3t}{3t+\beta }, \end{aligned}$$

where \(\alpha \ge \beta >1\). We can show that \({\mathbb {E}}^{\zeta }\) is an eRMPbM.

Conditions (Ex1) and (Ex2) are trivial. For (Ex3), we get

$$\begin{aligned} {\mathbb {E}}^{\zeta }_{1,2}(t+s+z)=\frac{t}{t+\alpha } \ge \min \{{\mathbb {E}}^{\zeta }_{1,3}(\epsilon (1,2)t), {\mathbb {E}}^{\zeta }_{2,4}(\epsilon (1,2)s),{\mathbb {E}}^{\zeta }_{3,4}(\epsilon (1,2)z)\} =\frac{\frac{t}{1+2}}{\frac{t}{1+2}+4\alpha }. \end{aligned}$$

For other cases, we can proceed in a similar way. Therefore, for every \(\zeta ,\varsigma \in {\mathcal {Q}}\) with distinct \(u,v \in {\mathcal {Q}} {\setminus } \{\zeta ,\varsigma \}\), we obtain

$$\begin{aligned} {\mathbb {E}}^{\zeta }_{ \zeta ,\varsigma }(t+s+z) \ge {\mathcal {T}}({\mathcal {T}}({\mathbb {E}}^{\zeta }_{ \zeta ,u}(\epsilon (\zeta ,\varsigma ) t), {\mathbb {E}}^{\zeta }_{ u,v}(\epsilon (\zeta ,\varsigma )s)){\mathbb {E}}^{\zeta }_{ v,\varsigma }(\epsilon (\zeta ,\varsigma )z).). \end{aligned}$$

Thus, \(({\mathcal {Q}},{\mathbb {E}}^{\zeta },{\mathcal {T}})\) is an eRMPbM-space, but not an eMPbM-space, because

$$\begin{aligned} {\mathbb {E}}^{\zeta }_{1,2}(t+s)=\frac{t}{t+\alpha }\ngeq \min \{{\mathbb {E}}^{\zeta }_{1,3} (\epsilon (1,2)t),{\mathbb {E}}^{\zeta }_{3,2}(\epsilon (1,2)s)\}=\frac{t}{t+\beta }. \end{aligned}$$

Example 4

Let us assume that \({\mathcal {Q}} =[0,1]\), \({\mathbb {E}}^{\zeta }\) and \({\mathcal {T}}\) are as in Example 3. Therefore, \(({\mathcal {Q}},{\mathbb {E}}^{\zeta },{\mathcal {T}})\) is a complete eRMPbM-space with \(\epsilon (\zeta ,\varsigma ) =\frac{\zeta +\varsigma }{2}\). Let us introduce the function \(\varpi : {\mathcal {Q}} \rightarrow CB({\mathcal {Q}})\) as \(\varpi \zeta =[0,\frac{\zeta }{4}]\) and \(\varphi : {\mathbb {R}}^{ +}\rightarrow {\mathbb {R}}^{ +}\) by \(\varphi (t) = t\). Using the definition of the probabilistic Hausdorff metric in Definition 5, we get

$$\begin{aligned} a_{1}H_{\varpi \zeta ,\varpi \varsigma }(\alpha ^{k}\varphi (t))=a_{1}\frac{\frac{1}{2^{k}}t}{\frac{1}{2^{k}}t+\vert \frac{\zeta }{4}-\frac{\varsigma }{4}\vert ^{2}}&=a_{1}\frac{t}{t+2^{k-4}\vert \zeta -\varsigma \vert ^{2}}\\&\ge a_{1}\frac{t}{t+2^{k-2}\vert \zeta -\varsigma \vert ^{2}}\\&=a_{1}{\mathbb {E}}^{\zeta }_{\zeta ,\varsigma }(\alpha ^{k-1}\varphi (\frac{t}{c}))\\&\ge -a_{4}{\mathbb {E}}^{\zeta }_{\zeta ,\varsigma }(\alpha ^{k-1}\varphi (\frac{t}{c}))-a_{5} {\mathbb {E}}^{\zeta }_{\zeta ,u}(\alpha ^{k-1}\varphi (\frac{t}{c})), \end{aligned}$$

where, \(c=\frac{1}{2},a_{1}=1,a_{4}=-2, a_{5}=-1\) and \( a_{2}=a_{3}=0\). Since \(\varpi \) has compact values, it has \({\mathbb {E}}\)-APV and closed mapping. On the other hand, by the definition of \(\varpi \), all conditions of Theorem 2 are satisfied. Hence, Theorem 2 implies that \(\varpi \) has an FP.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaharpashlou, R., Ghasab, E.L. & Lopes, A.M. On extended, and extended rectangular, Menger probabilistic b-metric spaces: applications to the existence of solutions of integral, and fractional differential, equations. Comp. Appl. Math. 42, 295 (2023). https://doi.org/10.1007/s40314-023-02431-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02431-6

Keywords

Mathematics Subject Classification

Navigation