Skip to main content
Log in

(pq)-Rung linear Diophantine fuzzy sets and their application in decision-making

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The q-rung linear Diophantine fuzzy set is one of the effective generalizations of Diophantine fuzzy set for dealing with uncertainties in information. Under this environment, in this study, we define a new type of extensions of Diophantine fuzzy sets called (pq)-rung linear Diophantine fuzzy sets. The (pq)-rung linear Diophantine fuzzy sets can supply with more doubtful circumstances than q-rung linear Diophantine fuzzy sets and intuitionistic q-rung linear Diophantine fuzzy sets because of their larger range of depicting the membership grades. The values of this membership grades function and the non-membership grades function are symmetric. Moreover, the novel notion of a (pq)-rung linear Diophantine fuzzy set through double universes is more flexible when debating the symmetry between two or more objects that are better than the diffusing concept of a p-rung linear Diophantine fuzzy, as well as q-rung linear Diophantine fuzzy set. The main advantage of (pq)-rung linear Diophantine fuzzy sets is that it can describe more uncertainties than linear Diophantine fuzzy sets, which can be applied in many decision-making problems. Then, we suggest a number of geometric and averaging operators based on defined operating laws for a (pq)-rung linear Diophantine fuzzy set. To address the emergency situation under (pq)-rung linear Diophantine fuzzy information, two ranking algorithms based on proposed aggregation operators are presented in the last section of the paper. The goal of this study is to present a (pq)-rung linear Diophantine fuzzy multi-attribute decision-making ((pq)RLDFMADM) model for controlling emergency circumstances, because doing so is difficult. Fundamentally, the achievement of suitable and accurate responses to the emergency multi-attribute decision-making circumstance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almagrabi AO, Abdullah S, Shams M, Otaibi YDA, Ashraf S (2022) A new approach to \(q\)-linear Diophantine fuzzy emergency decision support system for COVID19. J Ambient Intell Human Comput 113:1687–1713

    Article  Google Scholar 

  • Alshammari I, Parimala M, Ozel C, Riaz M (2022) Spherical linear Diophantine fuzzy TOPSIS algorithm for green supply chain management system. J Funct Spaces 2022:Article ID 3136462, 12 pages

    MathSciNet  Google Scholar 

  • Ashraf S, Razzaque H, Naeem M, Botmart T (2023) Spherical \(q\)-linear Diophantine fuzzy aggregation information: application in decision support systems. AIMS Math 8(3):6651–6681

    Article  Google Scholar 

  • Atanassov KT (1968) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    Article  MATH  Google Scholar 

  • Ayub S, Shabir M, Riaz M, Aslam M, Chinram R (2021) Linear Diophantine fuzzy relations and their algebraic properties with decision making. Symmetry 13:945

    Article  Google Scholar 

  • Farid HMA, Riaz M, Khan MJ, Kumam P, Sitthithakerngkiet K (2022) Sustainable thermal power equipment supplier selection by Einstein prioritized linear Diophantine fuzzy aggregation operators. AIMS Mathematics 7(6):11201–11242

    Article  MathSciNet  Google Scholar 

  • Hashmi MR, Tehrim ST, Riaz M, Pamucar D, Cirovic G (2021) Spherical linear Diophantine fuzzy soft rough sets with multi-criteria decision making. Axioms 10:185

    Article  Google Scholar 

  • Iampan A, Garcıa GS, Riaz M, Farid HMA, Chinram R (2021) Linear Diophantine fuzzy Einstein aggregation operators for multi-criteria decision-making problems. Journal of Mathematics 2021:Article ID 5548033, 31 pages

    Article  MathSciNet  MATH  Google Scholar 

  • Ibrahim HZ, Alshammari I (2022) \(n, m\)-rung orthopair fuzzy sets with applications to multi-criteria decision making. IEEE Access 10:99562–99572

    Article  Google Scholar 

  • Iqbal S, Yaqoob N (2023) Ranking of linear Diophantine fuzzy numbers using circumcenter of centroids. AIMS Mathematics 8(4):9840–986

    Article  MathSciNet  Google Scholar 

  • Kamacı H (2021) Linear Diophantine fuzzy algebraic structures. J Ambient Intell Human Comput 12:10353–10373

    Article  Google Scholar 

  • Kamacı H (2022) Complex linear Diophantine fuzzy sets and their cosine similarity measures with applications. Complex & Intelligent Systems 8:1281–1305

    Article  Google Scholar 

  • Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic. Prentice hall, New Jersey

    MATH  Google Scholar 

  • Mahmood T, Ali Z, Rehman UU, Aslam M (2022) An advanced study on the Bonferroni mean operators for managing cubic intuitionistic complex fuzzy soft settings and their applications in decision making. IEEE Access 10:58689–58721

    Article  Google Scholar 

  • Mahmood T, Rehman UU, Naeem M (2023) A novel approach towards Heronian mean operators in multiple attribute decision making under the environment of bipolar complex fuzzy information. AIMS Math. 8(1):1848–1870

    Article  MathSciNet  Google Scholar 

  • Mahmood T, Izatmand Z, Ali K, Ullah Q, Khan A. Alsanad, Mosleh MAA (2021) Linear Diophantine uncertain linguistic power Einstein aggregation operators and their applications to multiattribute decision making. Complexity 2021:Article ID 4168124, 25 pages

    Article  Google Scholar 

  • Mohammad MMS, Abdullah S, Shomrani MMA (2022) Some linear diophantine fuzzy similarity measures and their application in decision making problem. Ieee Access 10:29859–29877

    Article  Google Scholar 

  • Parimala M, Jafari S, Riaz M, Aslam M (2021) Applying the dijkstra algorithm to solve a linear Diophantine fuzzy environment. Symmetry 13:1616

    Article  Google Scholar 

  • Petchimuthu S, Riaz M, Kamacı H (2022) Correlation coefficient measures and aggregation operators on interval-valued linear Diophantine fuzzy sets and their applications. Comp Appl Math 41:409

    Article  MathSciNet  MATH  Google Scholar 

  • Prakash K, Parimala M, Garg H, Riaz M (2022) Lifetime prolongation of a wireless charging sensor network using a mobile robot via linear Diophantine fuzzy graph environment. Complex Intell Syst 8:2419–2434

    Article  Google Scholar 

  • Quran AA (2023) \(T\)-spherical linear Diophantine fuzzy aggregation operators for multiple attribute decision-making. AIMS Math 8(5):12257–12286

    Article  MathSciNet  Google Scholar 

  • M. Riaz, H.M. Athar Farid and F. Karaaslan, Linear Diophantine fuzzy aggregation operators with multi-criteria decision-making, Journal of Computational and Cognitive Engineering, 1–12, 2023

  • Riaz M, Hashmi MR (2019) Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems. J Intell Fuzzy Syst 37:5417–5439

    Article  Google Scholar 

  • Tahan MA, Davvaz B, Parimala M, Kaseasbeh SA (2022) Linear Diophantine fuzzy subsets of polygroups. Carpathian Math Publ 14(2):564–581

    Article  MathSciNet  MATH  Google Scholar 

  • Yager RR (2014) Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst 22(4):958–965

    Article  Google Scholar 

  • Yager RR (2017) Generalized orthopair fuzzy sets. IEEE Trans Fuzzy Syst 25(5):1222–1230

    Article  Google Scholar 

  • Yousafzai F, Zia MD, Khan MI, Khalaf MM, Ismail Rashad (2023) Linear Diophantine fuzzy sets over complex fuzzy information with applications in information theory. Ain Shams Eng J 8:338–353

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets, Information. Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work (Grant No. RGNS) was supported by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (OPS MHESI), and Thailand Science Research and Innovation (TSRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pairote Yiarayong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of the Theorems

Appendix: Proof of the Theorems

Proof of Theorem 1

Here, we prove part 1 and 5. Proofs of 2, 3, 4, and 6 are easy to reader can get by replacing first vector in (pq)-RLDFN as in 1 and 5, whereas 7 can get by rule 8 in the Definition  11. The rest follows on the similar lines.

1. Let \({\mathcal {A}} = \left( \left( \mu _{A}, \eta _{A} \right) , \left( \alpha _{A}, \beta _{A}\right) \right) \) and \(\mathcal {B} = \left( \left( \mu _{B}, \eta _{B} \right) ,\left( \alpha _{B}, \beta _{B}\right) \right) \) be any (pq)RLDFNs on U. Where from it can be easily proved that

$$\begin{aligned} \begin{array}{lcl} \left( \mu _{A}, \eta _{A} \right) \oplus \left( \mu _{B}, \eta _{B} \right) &{}=&{} \left( \root p \of { \left( \mu _{A}\right) ^{p} + \left( \mu _{B}\right) ^{p} - \left( \mu _{A}\right) ^{p}\left( \mu _{B}\right) ^{p}}, \eta _{A}\eta _{B} \right) \\ &{}=&{} \left( \root p \of { \left( \mu _{B}\right) ^{p} + \left( \mu _{A}\right) ^{p} - \left( \mu _{B}\right) ^{p}\left( \mu _{A}\right) ^{p}}, \eta _{B}\eta _{A} \right) \\ &{}=&{}\left( \mu _{B}, \eta _{B} \right) \oplus \left( \mu _{A}, \eta _{A} \right) . \end{array} \end{aligned}$$

Similarly, we can prove that \( \left( \alpha _{A}, \beta _{A}\right) \oplus \left( \alpha _{B}, \beta _{B}\right) = \left( \mu _{B}, \eta _{B} \right) \oplus \left( \alpha _{A}, \beta _{A}\right) \). Therefore, we obtain that \({\mathcal {A}}\oplus \mathcal {B} = \mathcal {B}\oplus {\mathcal {A}}\).

5. Let \({\mathcal {A}} = \left( \left( \mu _{A}, \eta _{A} \right) , \left( \alpha _{A}, \beta _{A}\right) \right) \) and \(\mathcal {B} = \left( \left( \mu _{B}, \eta _{B} \right) ,\left( \alpha _{B}, \beta _{B}\right) \right) \) be any (pq)RLDFNs on U. Where from it can be easily proved that

$$\begin{aligned} \lambda \left( \mu _{A}, \eta _{A} \right) \oplus \lambda \left( \mu _{B}, \eta _{B} \right)= & {} \begin{array}{ccc} \left( \root p \of { 1 - \left( 1 - \left( \mu _{A}\right) ^{p} \right) ^{\lambda }}, \left( \eta _{A}\right) ^{\lambda }\right) \oplus &{}\\ \left( \root p \of { 1 - \left( 1 - \left( \mu _{B}\right) ^{p} \right) ^{\lambda }}, \left( \eta _{B}\right) ^{\lambda } \right) &{} \end{array} \\= & {} \left( \begin{array}{ccc} \root p \of {\begin{array}{ccc} \left( \root p \of { 1- \left( 1- \left( \mu _{A}\right) ^{p}\right) ^{\lambda } }\right) ^{p} + &{} \\ \left( \root p \of { 1- \left( 1- \left( \mu _{B}\right) ^{p} \right) ^{\lambda } }\right) ^{p} + &{} \\ - \left( \begin{array}{ccc} \left( \root p \of { 1- \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\lambda } }\right) ^{p} &{} \\ \left( \root p \of { 1- \left( 1- \left( \mu _{B}\right) ^{p} \right) ^{\lambda } }\right) ^{p} &{} \end{array}\right) &{} \end{array}}, &{} \\ \left( \eta _{A}\right) ^{\lambda }\left( \eta _{B}\right) ^{\lambda }&{} \end{array} \right) \\ \end{aligned}$$

and

$$\begin{aligned} \lambda \left( \left( \mu _{A}, \eta _{A} \right) \oplus \left( \mu _{B}, \eta _{B} \right) \right)= & {} \lambda \left( \root p \of { \left( \mu _{A}\right) ^{p} + \left( \mu _{B}\right) ^{p} - \left( \mu _{A}\right) ^{p}\left( \mu _{B}\right) ^{p}}, \eta _{A}\eta _{B}\right) \\= & {} \left( \begin{array}{ccc} \root p \of { 1 - \left( 1 - \left( \root p \of { \left( \mu _{A}\right) ^{p} + \left( \mu _{B}\right) ^{p} - \left( \mu _{A}\right) ^{p}\left( \mu _{B}\right) ^{p}} \right) ^{p} \right) ^{\lambda }}, &{} \\ \left( \eta _{A}\eta _{B} \right) ^{\lambda } &{} \end{array} \right) \\= & {} \left( \begin{array}{ccc} \root p \of { 1 - \left( 1 - \left( \left( \mu _{A}\right) ^{p} + \left( \mu _{B}\right) ^{p} - \left( \mu _{A}\right) ^{p}\left( \mu _{B}\right) ^{p} \right) \right) ^{\lambda }}, &{} \\ \left( \eta _{A}\eta _{B} \right) ^{\lambda } &{} \end{array} \right) \\= & {} \left( \begin{array}{ccc} \root p \of { 1 - \left( \left( 1 - \left( \mu _{A}\right) ^{p} \right) \left( 1 - \left( \mu _{B}\right) ^{p} \right) \right) ^{\lambda }} ,&{} \\ \left( \eta _{A}\eta _{B}\right) ^{\lambda } &{} \end{array} \right) \\= & {} \left( \begin{array}{ccc} \root p \of { 1- \left( \left( 1- \left( \mu _{A}\right) ^{p} \right) \left( 1- \left( \mu _{B}\right) ^{p} \right) \right) ^{\lambda }},&{} \\ \left( \eta _{A}\eta _{B} \right) ^{\lambda } &{} \end{array} \right) \\= & {} \left( \begin{array}{ccc} \root p \of { 1 - \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\lambda }\left( 1- \left( \mu _{B}\right) ^{p} \right) ^{\lambda }}, &{} \\ \left( \eta _{A}\eta _{B} \right) ^{\lambda } &{} \end{array} \right) \\= & {} \left( \begin{array}{ccc} \root p \of { \begin{array}{ccc} 1- \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\lambda } + 1 - \left( 1- \left( \mu _{B}\right) ^{p} \right) ^{\lambda } +&{} \\ - \left( 1- \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\lambda }\right) \left( 1 - \left( 1- \left( \mu _{B}\right) ^{p} \right) ^{\lambda } \right) &{} \end{array}}, &{} \\ \left( \eta _{A}\eta _{B} \right) ^{\lambda } &{} \end{array} \right) , \end{aligned}$$

and so, \( \lambda \left( \mu _{A}, \eta _{A} \right) \oplus \lambda \left( \mu _{B}, \eta _{B} \right) = \lambda \left( \left( \mu _{A}, \eta _{A} \right) \oplus \left( \mu _{B}, \eta _{B} \right) \right) \). Similarly, it follows that \( \lambda \left( \alpha _{A}, \beta _{A} \right) \oplus \lambda \left( \alpha _{B}, \beta _{B} \right) = \lambda \left( \left( \alpha _{A}, \beta _{A} \right) \oplus \left( \alpha _{B}, \beta _{B} \right) \right) \). Therefore, we obtain that \(\lambda \left( {\mathcal {A}}\oplus \mathcal {B}\right) = \lambda {\mathcal {A}} \oplus \lambda \mathcal {B}\).

7. Let \({\mathcal {A}} = \left( \left( \mu _{A}, \eta _{A} \right) , \left( \alpha _{A}, \beta _{A}\right) \right) \) be a (pq)RLDFN on U. Where from it can be easily proved that

$$\begin{aligned} \begin{array}{lcl} \left( \lambda + \xi \right) \left( \mu _{A}, \eta _{A} \right) &{}=&{} \left( \root p \of { 1 - \left( 1 - \left( \mu _{A}\right) ^{p} \right) ^{\lambda +\xi }}, \left( \eta _{A}\right) ^{\lambda +\xi } \right) \\ &{}=&{} \left( \begin{array}{ccc} \root p \of { 1 - \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\lambda }\left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\xi }},&{} \\ \left( \eta _{A} \right) ^{\lambda +\xi } &{} \end{array} \right) \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{lcl} \lambda \left( \mu _{A}, \eta _{A} \right) \oplus \xi \left( \mu _{A}, \eta _{A} \right) &{}=&{} \begin{array}{ccc} \left( \root p \of { 1 - \left( 1 - \left( \mu _{A}\right) ^{p} \right) ^{\lambda }}, \left( \eta _{A}\right) ^{\lambda } \right) \oplus &{}\\ \left( \root p \of { 1 - \left( 1 - \left( \mu _{A}\right) ^{p} \right) ^{\xi }}, \left( \eta _{A}\right) ^{\xi } \right) &{} \end{array} \\ &{}=&{} \left( \begin{array}{ccc} \root p \of {\begin{array}{ccc} \left( \root p \of { 1 - \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\lambda } }\right) ^{p} + &{} \\ \left( \root p \of { 1 - \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\xi } }\right) ^{p} + &{} \\ - \left( \begin{array}{ccc} \left( \root p \of { 1 - \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\lambda } }\right) ^{p} &{} \\ \left( \root p \of { 1 - \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\xi } }\right) ^{p} &{} \end{array}\right) &{} \end{array}}, &{} \\ \left( \eta _{A}\right) ^{\lambda }\left( \eta _{A}\right) ^{\xi }&{} \end{array} \right) \\ &{}=&{} \left( \begin{array}{ccc} \root p \of { \begin{array}{ccc} 1 - \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\lambda } + 1 - \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\xi } +&{} \\ - \left( 1- \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\lambda }\right) \left( 1 - \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\xi } \right) &{} \end{array}}, &{} \\ \left( \eta _{A} \right) ^{\lambda +\xi } &{} \end{array} \right) , \end{array} \end{aligned}$$

and so, \( \left( \lambda + \xi \right) \left( \mu _{A}, \eta _{A} \right) = \lambda \left( \mu _{A}, \eta _{A} \right) \oplus \xi \left( \mu _{A}, \eta _{A} \right) \). It can be similarly proved that \( \left( \lambda + \xi \right) \left( \alpha _{A}, \beta _{A} \right) = \lambda \left( \alpha _{A}, \beta _{A} \right) \oplus \xi \left( \alpha _{A}, \beta _{A} \right) \). Therefore, we obtain that \(\left( \lambda + \xi \right) {\mathcal {A}} = \lambda {\mathcal {A}} \oplus \xi {\mathcal {A}}\). \(\square \)

Proof of Theorem 3

To prove the theorem, we use mathematical induction on n. Therefore, we have the following.

Step 1. Now, for \(n = 2\), we get

$$\begin{aligned} \displaystyle \bigoplus ^{2}_{i = 1}\lambda _{i}\left( \mu _{A_{i}}, \eta _{A_{i}} \right)= & {} \lambda _{1}\left( \mu _{A_{1}}, \eta _{A_{1}} \right) \oplus \lambda _{2}\left( \mu _{A_{2}}, \eta _{A_{2}} \right) \\= & {} \begin{array}{ccc} \left( \root p \of { 1 - \left( 1 - \left( \mu _{A_{1}}\right) ^{p} \right) ^{\lambda _{1}}}, \left( \eta _{A_{1}}\right) ^{\lambda _{1}} \right) \oplus &{} \\ \left( \root p \of { 1 - \left( 1 - \left( \mu _{A_{2}}\right) ^{p} \right) ^{\lambda _{2}}}, \left( \eta _{A_{2}}\right) ^{\lambda _{2}} \right) &{} \end{array}\\= & {} \left( \begin{array}{ccc} \root p \of {\begin{array}{ccc} \left( \root p \of { 1 - \left( 1- \left( \mu _{A_{1}}\right) ^{p} \right) ^{\lambda _{1}}}\right) ^{p} + &{} \\ \left( \root p \of { 1 - \left( 1- \left( \mu _{A_{2}}\right) ^{p} \right) ^{\lambda _{2}} }\right) ^{p} + &{} \\ - \left( \begin{array}{ccc} \left( \root p \of { 1 - \left( 1- \left( \mu _{A_{1}}\right) ^{p} \right) ^{\lambda _{1}}}\right) ^{p} &{} \\ \left( \root p \of { 1 - \left( 1- \left( \mu _{A_{2}}\right) ^{p} \right) ^{\lambda _{2}}}\right) ^{p} &{} \end{array}\right) &{} \end{array}}, &{} \\ \left( \beta _{A_{1}}\right) ^{\lambda _{1}}\left( \eta _{A_{2}}\right) ^{\lambda _{2}}&{} \end{array} \right) \\= & {} \left( \begin{array}{ccc} \root p \of { \begin{array}{ccc} 1- \left( 1- \left( \mu _{A_{1}}\right) ^{p} \right) ^{\lambda _{1}} + 1- \left( 1- \left( \mu _{A_{2}}\right) ^{p} \right) ^{\lambda _{2}} +&{} \\ - \left( 1- \left( 1- \left( \mu _{A_{1}}\right) ^{p} \right) ^{\lambda _{1}}\right) \left( 1- \left( 1- \left( \mu _{A_{2}}\right) ^{p} \right) ^{\lambda _{2}} \right) &{} \end{array}}, &{} \\ \left( \eta _{A_{1}}\right) ^{\lambda _{1}}\left( \eta _{A_{2}}\right) ^{\lambda _{2}}&{} \end{array} \right) \\= & {} \left( \begin{array}{ccc} \root p \of { 1 - \left( 1- \left( \mu _{A_{1}}\right) ^{p} \right) ^{\lambda _{1}}\left( 1- \left( \mu _{A_{2}}\right) ^{p} \right) ^{\lambda _{2}}}, &{} \\ \displaystyle \prod ^{2}_{i = 1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}}&{} \end{array} \right) \\= & {} \left( \root p \of { 1 - \displaystyle \prod ^{2}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}}, \displaystyle \prod ^{2}_{i = 1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}} \right) . \end{aligned}$$

Similarly, \( \displaystyle \bigoplus \nolimits ^{2}_{i = 1}\lambda _{i}\left( \alpha _{A_{i}}, \beta _{A_{i}} \right) = \left( \root p \of { 1 - \displaystyle \prod \nolimits ^{2}_{i = 1}\left( 1- \left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}}, \displaystyle \prod \nolimits ^{2}_{i = 1}\left( \beta _{A_{i}} \right) ^{\lambda _{i}} \right) \). Thus, Eq. 11 holds.

Step 2. Suppose that Eq. 11 holds for \(n = k\), that is

$$\begin{aligned} \mathcal{W}\mathcal{A}\left( {\mathcal {A}}_{1}, {\mathcal {A}}_{2},\ldots ,{\mathcal {A}}_{k} \right) = \left( \begin{array}{ccc} \left( \begin{array}{ccc} \root p \of { 1 - \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}},&{} \\ \displaystyle \prod ^{k}_{i = 1}\left( \eta _{A_{i}}\right) ^{\lambda _{i}}&{} \end{array}\right) , &{} \\ \left( \begin{array}{ccc} \root p \of { 1 - \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \alpha _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}},&{} \\ \displaystyle \prod ^{k}_{i = 1}\left( \beta _{A_{i}} \right) ^{\lambda _{i}}&{} \end{array}\right)&\end{array}\right) . \end{aligned}$$

Step 3. Now, we have to prove that Eq. 11 holds for \(n = k + 1\), based on the operational laws of the (pq)RLDFNs, we can get

$$\begin{aligned} \displaystyle \bigoplus ^{k+1}_{i = 1}\lambda _{i}\left( \mu _{A_{i}}, \eta _{A_{i}} \right)= & {} \displaystyle \bigoplus ^{k}_{i = 1}\lambda _{i}\left( \mu _{A_{i}}, \eta _{A_{i}} \right) \oplus \lambda _{k+1}\left( \mu _{A_{k+1}}, \eta _{A_{k+1}} \right) \\= & {} \begin{array}{ccc} \left( \root p \of { 1 - \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}}, \displaystyle \prod ^{k}_{i = 1}\left( \eta _{A_{i}}\right) ^{\lambda _{i}}\right) &{} \\ \oplus \left( \root p \of { 1 - \left( 1 - \left( \mu _{A_{k+1}}\right) ^{p} \right) ^{\lambda _{k+1}}}, \left( \eta _{A_{k+1}}\right) ^{\lambda _{k+1}} \right) &{} \end{array} \\= & {} \left( \begin{array}{ccc} \root p \of {\begin{array}{ccc} \left( \root p \of { 1 - \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \mu _{i}\right) ^{p} \right) ^{\lambda _{i}}}\right) ^{p} + &{} \\ \left( \root p \of { 1 - \left( 1- \left( \mu _{k+1}\right) ^{q} \right) ^{\lambda _{k+1}} }\right) ^{p} + &{} \\ - \left( \begin{array}{ccc} \left( \root p \of { 1 - \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \mu _{i}\right) ^{p} \right) ^{\lambda _{i}}}\right) ^{p} &{} \\ \left( \root p \of { 1 - \left( 1- \left( \mu _{k+1}\right) ^{p} \right) ^{\lambda _{k+1}}}\right) ^{p} &{} \end{array}\right) &{} \end{array}}, &{} \\ \displaystyle \prod ^{k}_{i = 1}\left( \eta _{i}\right) ^{\lambda _{1}}\left( \eta _{k+1}\right) ^{\lambda _{k+1}}&{} \end{array} \right) \\= & {} \left( \begin{array}{ccc} \root p \of { \begin{array}{ccc} 1 - \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \mu _{i}\right) ^{p} \right) ^{\lambda _{i}} + 1 - \left( 1- \left( \mu _{k+1}\right) ^{p} \right) ^{\lambda _{k+1}} +&{} \\ - \left( 1- \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \mu _{i}\right) ^{p} \right) ^{\lambda _{i}}\right) \left( 1 - \left( 1- \left( \mu _{k+1}\right) ^{p} \right) ^{\lambda _{k+1}} \right) &{} \end{array}}, &{} \\ \displaystyle \prod ^{k}_{i = 1}\left( \eta _{A_{i}}\right) ^{\lambda _{i}}\left( \eta _{A_{k+1}}\right) ^{\lambda _{k+1}}&{} \end{array} \right) \\= & {} \left( \begin{array}{ccc} \root p \of { 1- \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}\left( 1- \left( \mu _{A_{k+1}}\right) ^{p} \right) ^{\lambda _{k+1}}}, &{} \\ \displaystyle \prod ^{k+1}_{i = 1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}}&{} \end{array} \right) \\= & {} \left( \root p \of { 1 - \displaystyle \prod ^{k+1}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}}, \displaystyle \prod ^{k+1}_{i = 1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}} \right) . \end{aligned}$$

Similarly, \( \displaystyle \bigoplus \nolimits ^{k+1}_{i = 1}\lambda _{i}\left( \alpha _{A_{i}}, \beta _{A_{i}} \right) = \left( \root p \of { 1 - \displaystyle \prod \nolimits ^{k+1}_{i = 1}\left( 1- \left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}}, \displaystyle \prod \nolimits ^{k+1}_{i = 1}\left( \beta _{A_{i}} \right) ^{\lambda _{i}} \right) \). Therefore, Eq. 11 holds for \(n = k + 1\), and hence, Eq. 11 holds for any i.

In the following, we will prove that \(\mathcal{W}\mathcal{A}\left( {\mathcal {A}}_{1}, {\mathcal {A}}_{2},\ldots ,{\mathcal {A}}_{n} \right) \) is also a (pq)RLDFN. Then, since \(0\le \left( \alpha _{A_{i}}\right) ^{p} + \left( \beta _{A_{i}}\right) ^{q} \le 1\), we have

$$\begin{aligned}{} & {} \left( \beta _{A_{i}}\right) ^{q} \le 1-\left( \alpha _{A_{i}}\right) ^{p}\\{} & {} \left( \left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}} \le \left( 1-\left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}} \\{} & {} \displaystyle \prod ^{n}_{i = 1}\left( \left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}} \le \displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}} \\{} & {} -\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}} +\displaystyle \prod ^{n}_{i = 1}\left( \left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}} \le 0\\{} & {} 0\le 1 -\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}} +\displaystyle \prod ^{n}_{i = 1}\left( \left( \beta _{A_{i}}\right) ^{\lambda _{i}} \right) ^{q} \le 1. \end{aligned}$$

Thus, we obtain that

$$\begin{aligned} 0\le \left( 1 -\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}\right) \root p \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}} + \displaystyle \prod ^{n}_{i = 1}\left( \left( \beta _{A_{i}}\right) ^{\lambda _{i}} \right) ^{q}\displaystyle \prod ^{n}_{i = 1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}} \le 1\end{aligned}$$

since

$$\begin{aligned} 0\le \root p \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}}, \displaystyle \prod ^{n}_{i = 1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}}\le 1 \end{aligned}$$

and

$$\begin{aligned} 0\le 1 -\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}} +\displaystyle \prod ^{n}_{i = 1}\left( \left( \beta _{A_{i}}\right) ^{\lambda _{i}} \right) ^{q} \le 1. \end{aligned}$$

\(\square \)

Proof of Theorem 4

Then, since \({\mathcal {A}}_{1} = {\mathcal {A}}_{2} = \ldots = {\mathcal {A}}_{n} = {\mathcal {A}}\) by Theorem 3, we have

$$\begin{aligned} \begin{array}{lcl} \mathcal{W}\mathcal{A}\left( {\mathcal {A}}_{1}, {\mathcal {A}}_{2},\ldots ,{\mathcal {A}}_{n} \right) &{}=&{} \left( \begin{array}{ccc} \left( \begin{array}{ccc} \root p \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}},&{} \\ \displaystyle \prod ^{n}_{i = 1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}}&{} \end{array}\right) , &{} \\ \left( \begin{array}{ccc} \root p \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}},&{} \\ \displaystyle \prod ^{n}_{i = 1}\left( \beta _{A_{i}} \right) ^{\lambda _{i}}&{} \end{array}\right)&\end{array}\right) \end{array}\\ \begin{array}{lcl} &{}=&{} \left( \begin{array}{ccc} \left( \begin{array}{ccc} \root p \of { 1 - \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}}},&{} \\ \left( \eta _{A} \right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}}&{} \end{array}\right) , &{} \\ \left( \begin{array}{ccc} \root p \of { 1 - \left( 1- \left( \alpha _{A}\right) ^{p} \right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}}},&{} \\ \left( \beta _{A} \right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}}&{} \end{array}\right) &{} \end{array}\right) \\ &{}=&{} \left( \begin{array}{ccc} \left( \root p \of { 1 - \left( 1- \left( \mu _{A}\right) ^{p} \right) ^{1}}, \left( \eta _{A} \right) ^{1}\right) ,&{} \\ \left( \root p \of { 1 - \left( 1- \left( \alpha _{A}\right) ^{p} \right) ^{1}}, \left( \beta _{A} \right) ^{1}\right) &{} \end{array}\right) \\ &{}=&{} \left( \left( \mu _{A}, \eta _{A} \right) , \left( \alpha _{A}, \beta _{A}\right) \right) \\ &{}=&{}{\mathcal {A}}. \end{array} \end{aligned}$$

Therefore, we obtain that \(\mathcal{W}\mathcal{A}\left( {\mathcal {A}}_{1}, {\mathcal {A}}_{2},\ldots , {\mathcal {A}}_{n} \right) = {\mathcal {A}}\). \(\square \)

Proof of Theorem 5

Then, since \({\mathcal {A}}_{i}\preceq \mathcal {B}_{i}\) for every \(i=1,2,3,\ldots , n\), we have \(\mu _{A_{i}} \le \mu _{B_{i}}\) and \(\eta _{A_{i}} \ge \eta _{B_{i}}\), that is

$$\begin{aligned}{} & {} \left( \mu _{A_{i}}\right) ^{p} \le \left( \mu _{B_{i}}\right) ^{p}\nonumber \\{} & {} 1- \left( \mu _{A_{i}}\right) ^{p} \ge 1- \left( \mu _{B_{i}}\right) ^{p}\nonumber \\{} & {} \left( 1- \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}} \ge \left( 1- \left( \mu _{B_{i}}\right) ^{p}\right) ^{\lambda _{i}}\nonumber \\{} & {} \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}} \ge \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \mu _{B_{i}}\right) ^{p}\right) ^{\lambda _{i}}\nonumber \\{} & {} 1-\displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}} \le 1-\displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \mu _{B_{i}}\right) ^{p}\right) ^{\lambda _{i}}\nonumber \\{} & {} \root p \of { 1-\displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}} \le \root p \of { 1-\displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \mu _{B_{i}}\right) ^{p}\right) ^{\lambda _{i}}}. \end{aligned}$$
(19)

From these calculations, we obtain

$$\begin{aligned}{} & {} \left( \eta _{A_{i}}\right) ^{\lambda _{i}} \ge \left( \eta _{B_{i}}\right) ^{\lambda _{i}}\nonumber \\{} & {} \displaystyle \prod ^{n}_{i = 1}\left( \eta _{A_{i}}\right) ^{\lambda _{i}} \ge \displaystyle \prod ^{n}_{i = 1}\left( \eta _{B_{i}}\right) ^{\lambda _{i}}. \end{aligned}$$
(20)

Thus, by Eqs. (19) and (20), we have

$$\begin{aligned} \left( \begin{array}{ccc} \root p \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \mu _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}},&{} \\ \displaystyle \prod ^{n}_{i = 1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}}&{} \end{array}\right) \preceq \left( \begin{array}{ccc} \root p \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \mu _{B_{i}}\right) ^{p} \right) ^{\lambda _{i}}},&{} \\ \displaystyle \prod ^{n}_{i = 1}\left( \eta _{B_{i}} \right) ^{\lambda _{i}}&{} \end{array}\right) . \end{aligned}$$
(21)

Similarly, we can show that

$$\begin{aligned} \left( \begin{array}{ccc} \root p \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}}},&{} \\ \displaystyle \prod ^{n}_{i = 1}\left( \beta _{A_{i}} \right) ^{\lambda _{i}}&{} \end{array}\right) \preceq \left( \begin{array}{ccc} \root p \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \alpha _{B_{i}}\right) ^{p} \right) ^{\lambda _{i}}},&{} \\ \displaystyle \prod ^{n}_{i = 1}\left( \beta _{B_{i}} \right) ^{\lambda _{i}}&{} \end{array}\right) . \end{aligned}$$
(22)

Therefore, by Eqs. (21) and (22), we get \(\mathcal{W}\mathcal{A}\left( {\mathcal {A}}_{1}, \ldots ,{\mathcal {A}}_{n} \right) \preceq \mathcal{W}\mathcal{A}\left( \mathcal {B}_{1}, \ldots , \mathcal {B}_{n} \right) \). \(\square \)

Proof of Theorem 6

For the membership grades of \(\mathcal{W}\mathcal{A}\left( {\mathcal {A}}_{1},\ldots ,{\mathcal {A}}_{n}\right) \), we have

$$\begin{aligned} \displaystyle \bigwedge ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}{} & {} \le \left( \mu _{A_{i}}\right) ^{p}\nonumber \\ 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}{} & {} \ge 1 - \left( \mu _{A_{i}}\right) ^{p}\nonumber \\ \left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}{} & {} \ge \left( 1 - \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}\nonumber \\ \displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}{} & {} \ge \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}\nonumber \\ 1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}{} & {} \le 1- \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}\nonumber \\ \root p \of { 1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}}{} & {} \le \root p \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}}\nonumber \\ \root p \of { 1-\left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) ^{ \displaystyle \sum ^{n}_{i = 1}\lambda _{i} }}{} & {} \le \root p \of { 1- \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}}\nonumber \\ \root p \of { 1 -\left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) }{} & {} \le \root p \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}}\nonumber \\ \displaystyle \bigwedge ^{n}_{i=1}\mu _{A_{i}}{} & {} \le \root p \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}} \end{aligned}$$
(23)

and

$$\begin{aligned} \displaystyle \bigvee ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}{} & {} \ge \left( \mu _{A_{i}}\right) ^{p}\nonumber \\ 1-\displaystyle \bigvee ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}{} & {} \le 1-\left( \mu _{A_{i}}\right) ^{p}\nonumber \\ \left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}{} & {} \le \left( 1-\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}\nonumber \\ \displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}{} & {} \le \displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}\nonumber \\ 1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}{} & {} \ge 1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}\nonumber \\ \root p \of {1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}}{} & {} \ge \root p \of {1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}}\nonumber \\ \root p \of {1-\left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}}}{} & {} \ge \root p \of {1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}}\nonumber \\ \root p \of {1-\left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \mu _{A_{i}}\right) ^{p}\right) ^{1}}{} & {} \ge \root p \of {1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}}\nonumber \\ \displaystyle \bigvee ^{n}_{i=1}\mu _{A_{i}}{} & {} \ge \root p \of {1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}}. \end{aligned}$$
(24)

Then, by Eqs. (23) and (24), we get

$$\begin{aligned} \displaystyle \bigwedge ^{n}_{i=1}\mu _{A_{i}} \le \root p \of { 1- \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \mu _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}}\le \displaystyle \bigvee ^{n}_{i=1}\mu _{A_{i}}. \end{aligned}$$
(25)

Similarly we can show that

$$\begin{aligned} \displaystyle \bigwedge ^{n}_{i=1}\alpha _{A_{i}} \le \root p \of { 1- \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \alpha _{A_{i}}\right) ^{p}\right) ^{\lambda _{i}}}\le \displaystyle \bigvee ^{n}_{i=1}\alpha _{A_{i}}. \end{aligned}$$
(26)

For the non-membership grades of \(\mathcal{W}\mathcal{A}\left( {\mathcal {A}}_{1},{\mathcal {A}}_{2},\ldots ,{\mathcal {A}}_{n}\right) \), we have

$$\begin{aligned}{} & {} \displaystyle \bigwedge ^{n}_{i=1} \left( \eta _{A_{i}}\right) ^{\lambda _{i}} \le \left( \eta _{A_{i}} \right) ^{\lambda _{i}} \le \displaystyle \bigvee ^{n}_{i=1} \left( \eta _{A_{i}}\right) ^{\lambda _{i}} \nonumber \\{} & {} \displaystyle \prod ^{n}_{i=1}\displaystyle \bigwedge ^{n}_{i=1} \left( \eta _{A_{i}}\right) ^{\lambda _{i}} \le \displaystyle \prod ^{n}_{i=1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}} \le \displaystyle \prod ^{n}_{i=1}\displaystyle \bigvee ^{n}_{i=1} \left( \eta _{A_{i}}\right) ^{\lambda _{i}} \nonumber \\{} & {} \displaystyle \bigwedge ^{n}_{i=1} \left( \eta _{A_{i}}\right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}} \le \displaystyle \prod ^{n}_{i=1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}} \le \displaystyle \bigvee ^{n}_{i=1} \left( \eta _{A_{i}}\right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}} \nonumber \\{} & {} \displaystyle \bigwedge ^{n}_{i=1} \left( \eta _{A_{i}}\right) \le \displaystyle \prod ^{n}_{i=1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}} \le \displaystyle \bigvee ^{n}_{i=1} \left( \eta _{A_{i}}\right) \nonumber \\{} & {} \displaystyle \bigwedge ^{n}_{i=1} \left( \eta _{A_{i}}\right) \le \displaystyle \prod ^{n}_{i=1}\left( \eta _{A_{i}} \right) ^{\lambda _{i}} \le \displaystyle \bigvee ^{n}_{i=1} \left( \eta _{A_{i}}\right) . \end{aligned}$$
(27)

It can be similarly proved that

$$\begin{aligned} \displaystyle \bigwedge ^{n}_{i=1} \left( \beta _{A_{i}}\right) \le \displaystyle \prod ^{n}_{i=1}\left( \beta _{A_{i}} \right) ^{\lambda _{i}} \le \displaystyle \bigvee ^{n}_{i=1} \left( \beta _{A_{i}}\right) . \end{aligned}$$
(28)

Therefore, by Eqs. (25), (26), (27), and (28), we have \({\mathcal {A}}^{-} \preceq \mathcal{W}\mathcal{A}\left( {\mathcal {A}}_{1},{\mathcal {A}}_{2},\ldots ,{\mathcal {A}}_{n}\right) \preceq {\mathcal {A}}^{+}\). \(\square \)

Proof of Theorem 7

To prove the Theorem 7, we use mathematical induction on n. For this, we proceed as follows.

Step 1. Now, for \(n = 2\), we have

$$\begin{aligned} \begin{array}{lcl} \displaystyle \bigotimes ^{2}_{i = 1}\left( \mu _{A_{i}}, \eta _{A_{i}} \right) ^{\lambda _{i}} &{}=&{} \left( \mu _{A_{1}}, \eta _{A_{1}} \right) ^{\lambda _{1}}\otimes \left( \mu _{A_{2}}, \eta _{A_{2}} \right) ^{\lambda _{2}}\\ &{}=&{} \begin{array}{ccc} \left( \left( \mu _{1}\right) ^{\lambda _{A_{1}}}, \root q \of { 1 - \left( 1 - \left( \eta _{A_{1}}\right) ^{q} \right) ^{\lambda _{1}}}\right) \otimes &{} \\ \left( \left( \mu _{2}\right) ^{\lambda _{A_{2}}}, \root q \of { 1 - \left( 1 - \left( \eta _{A_{2}}\right) ^{q} \right) ^{\lambda _{2}}} \right) &{} \end{array} \end{array}\qquad \qquad \qquad \qquad \quad \ \\ \begin{array}{lcl} &{}=&{} \left( \begin{array}{ccc} \left( \mu _{A_{1}}\right) ^{\lambda _{1}}\left( \mu _{A_{2}}\right) ^{\lambda _{2}},&{}\\ \root q \of {\begin{array}{ccc} \left( \root q \of { 1- \left( 1- \left( \eta _{A_{1}}\right) ^{q} \right) ^{\lambda _{1}}}\right) ^{q} + &{} \\ \left( \root q \of { 1- \left( 1- \left( \eta _{A_{2}}\right) ^{q} \right) ^{\lambda _{2}} }\right) ^{q} + &{} \\ - \left( \begin{array}{ccc} \left( \root q \of { 1- \left( 1- \left( \eta _{A_{1}}\right) ^{q} \right) ^{\lambda _{1}}}\right) ^{q} &{} \\ \left( \root q \of { 1- \left( 1- \left( \eta _{A_{2}}\right) ^{q} \right) ^{\lambda _{2}}}\right) ^{q} &{} \end{array}\right) &{} \end{array}}&{} \end{array} \right) \\ &{}=&{} \left( \begin{array}{ccc} \left( \mu _{A_{1}}\right) ^{\lambda _{1}}\left( \mu _{A_{2}}\right) ^{\lambda _{2}}, &{}\\ \root q \of { \begin{array}{ccc} 1- \left( 1- \left( \eta _{A_{1}}\right) ^{q} \right) ^{\lambda _{1}} + 1- \left( 1- \left( \eta _{A_{2}}\right) ^{q} \right) ^{\lambda _{2}} +&{}\\ - \left( 1- \left( 1- \left( \eta _{A_{1}}\right) ^{q} \right) ^{\lambda _{1}}\right) \left( 1- \left( 1- \left( \eta _{A_{2}}\right) ^{q} \right) ^{\lambda _{2}} \right) &{} \end{array}} &{} \end{array} \right) \\ &{}=&{} \left( \begin{array}{ccc} \displaystyle \prod ^{2}_{i = 1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}}, &{}\\ \root q \of { 1- \left( 1- \left( \eta _{A_{1}}\right) ^{q}\right) ^{\lambda _{1}}\left( 1- \left( \eta _{A_{2}}\right) ^{q} \right) ^{\lambda _{2}}} &{} \end{array} \right) \\ &{}=&{}\left( \displaystyle \prod ^{2}_{i = 1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}}, \root q \of { 1 - \displaystyle \prod ^{2}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}} \right) . \end{array} \end{aligned}$$

Similarly, \( \displaystyle \bigotimes ^{2}_{i = 1}\left( \alpha _{A_{i}}, \beta _{A_{i}} \right) ^{\lambda _{i}} = \left( \displaystyle \prod ^{2}_{i = 1}\left( \alpha _{A_{i}} \right) ^{\lambda _{i}}, \root q \of { 1 - \displaystyle \prod ^{2}_{i = 1}\left( 1- \left( \beta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}\right) \). Thus, Eq. (13) holds.

Step 2. Suppose that Eq. (13) holds for \(n = k\), that is

$$\begin{aligned} {\mathcal{W}\mathcal{G}}\left( {\mathcal {A}}_{1}, {\mathcal {A}}_{2},\ldots ,{\mathcal {A}}_{k} \right) = \left( \begin{array}{ccc} \left( \begin{array}{ccc} \displaystyle \prod ^{k}_{i = 1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}},&{}\\ \root q \of { 1 - \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}}&{} \end{array}\right) ,&{} \\ \left( \begin{array}{ccc} \displaystyle \prod ^{k}_{i = 1}\left( \alpha _{A_{i}} \right) ^{\lambda _{i}},&{}\\ \root q \of { 1 - \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}}&{} \end{array}\right)&\end{array}\right) . \end{aligned}$$

Step 3. Now, we have to prove that Eq. 13 holds for \(n = k + 1\), based on the operational laws of the (pq)RLDFNs, we can get

$$\begin{aligned} \displaystyle \bigotimes ^{k+1}_{i = 1}\left( \mu _{A_{i}}, \eta _{A_{i}} \right) ^{\lambda _{i}}_{i}= & {} \displaystyle \bigotimes ^{k}_{i = 1}\left( \mu _{A_{i}}, \eta _{A_{i}} \right) ^{\lambda _{i}}\otimes \left( \mu _{A_{k+1}}, \eta _{A_{k+1}} \right) ^{\lambda _{k+1}}\\= & {} {\mathcal{W}\mathcal{G}}\left( {\mathcal {A}}_{1}, \ldots , {\mathcal {A}}_{k}\right) \otimes \left( \mu _{A_{k+1}}, \eta _{A_{k+1}} \right) ^{\lambda _{k+1}}\\= & {} \begin{array}{ccc} \left( \displaystyle \prod ^{k}_{i = 1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}}, \root q \of { 1 - \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}}\right) &{} \\ \otimes \left( \left( \mu _{A_{k+1}}\right) ^{\lambda _{k+1}}, \root q \of { 1 - \left( 1 - \left( \eta _{A_{k+1}}\right) ^{q} \right) ^{\lambda _{k+1}}} \right) &{} \end{array}\\= & {} \left( \begin{array}{ccc} \displaystyle \prod ^{k}_{i = 1}\left( \mu _{A_{i}}\right) ^{\lambda _{1}}\left( \mu _{A_{k+1}}\right) ^{\lambda _{k+1}},&{}\\ \root q \of {\begin{array}{ccc} \left( \root q \of { 1- \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}\right) ^{q} + &{} \\ \left( \root q \of { 1- \left( 1- \left( \eta _{A_{k+1}}\right) ^{q} \right) ^{\lambda _{k+1}} }\right) ^{q} + &{} \\ - \left( \begin{array}{ccc} \left( \root q \of { 1- \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}}\right) ^{q} &{} \\ \left( \root q \of { 1- \left( 1- \left( \eta _{A_{k+1}}\right) ^{q} \right) ^{\lambda _{k+1}}}\right) ^{q} &{} \end{array}\right)&\end{array}}&\end{array} \right) \\= & {} \left( \begin{array}{ccc} \displaystyle \prod ^{k+1}_{i = 1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}}, &{}\\ \root q \of { 1 - \displaystyle \prod ^{k}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}\left( 1- \left( \eta _{A_{k+1}}\right) ^{q} \right) ^{\lambda _{k+1}}} &{} \end{array} \right) \\= & {} \left( \displaystyle \prod ^{k+1}_{i = 1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}}, \root q \of { 1 - \displaystyle \prod ^{k+1}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}} \right) . \end{aligned}$$

Similarly, \( \displaystyle \bigotimes \nolimits ^{k+1}_{i = 1}\left( \alpha _{A_{i}}, \beta _{A_{i}} \right) ^{\lambda _{i}}_{i} = \left( \displaystyle \prod ^{k+1}_{i = 1}\left( \alpha _{A_{i}} \right) ^{\lambda _{i}}, \root q \of { 1 - \displaystyle \prod ^{k+1}_{i = 1}\left( 1- \left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}} \right) \). Therefore, Eq. (13) holds for \(n = k+1\), and hence, Eq. (13) holds for any i.

In the following, we will prove that \({\mathcal{W}\mathcal{G}}\left( {\mathcal {A}}_{1}, {\mathcal {A}}_{2},\ldots ,{\mathcal {A}}_{n} \right) \) is also a (pq)RLDFN. Then, since \(\left( \alpha _{A_{i}}\right) ^{p} + \left( \beta _{A_{i}}\right) ^{q} \le 1\), we have

$$\begin{aligned}{} & {} \left( \alpha _{A_{i}}\right) ^{p} \le 1-\left( \beta _{A_{i}}\right) ^{q}\\{} & {} \left( \left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}} \le \left( 1-\left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}\\{} & {} \displaystyle \prod ^{n}_{i = 1}\left( \left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}} \le \displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}} \\{} & {} \displaystyle \prod ^{n}_{i = 1}\left( \left( \alpha _{A_{i}}\right) ^{p} \right) ^{\lambda _{i}} - \displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}} \le 0\\{} & {} 0\le \displaystyle \prod ^{n}_{i = 1}\left( \left( \alpha _{A_{i}}\right) ^{\lambda _{i}} \right) ^{p} + 1 -\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}} \le 1. \end{aligned}$$

Thus, we obtain that

$$\begin{aligned} 0\le \left( 1 -\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}\right) \root q \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}} +\displaystyle \prod ^{n}_{i = 1}\left( \left( \alpha _{A_{i}}\right) ^{\lambda _{i}} \right) ^{p}\displaystyle \prod ^{n}_{i = 1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}} \le 1 \end{aligned}$$

since

$$\begin{aligned} 0\le \displaystyle \prod ^{n}_{i = 1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}}, \root q \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}}\le 1 \end{aligned}$$

and

$$\begin{aligned} 0\le \displaystyle \prod ^{n}_{i = 1}\left( \left( \alpha _{A_{i}}\right) ^{\lambda _{i}} \right) ^{p} + 1 -\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}} \le 1. \end{aligned}$$

\(\square \)

Proof of Theorem 8

Then, since \({\mathcal {A}}_{1} = {\mathcal {A}}_{2} = \ldots = {\mathcal {A}}_{n} = {\mathcal {A}}\) by Theorem 7, we have

$$\begin{aligned} \begin{array}{lcl} {\mathcal{W}\mathcal{G}}\left( {\mathcal {A}}_{1}, {\mathcal {A}}_{2},\ldots ,{\mathcal {A}}_{n} \right) &{}=&{} \left( \begin{array}{ccc} \left( \begin{array}{ccc} \displaystyle \prod ^{n}_{i = 1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}},&{}\\ \root q \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}}&{} \end{array}\right) , &{}\\ \left( \begin{array}{ccc} \displaystyle \prod ^{n}_{i = 1}\left( \alpha _{A_{i}} \right) ^{\lambda _{i}},&{}\\ \root q \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}}&{} \end{array}\right) &{} \end{array}\right) \\ &{}=&{} \left( \begin{array}{ccc} \left( \begin{array}{ccc} \left( \mu _{A}\right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}},&{}\\ \root q \of { 1 - \left( 1- \left( \eta _{A}\right) ^{q} \right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}}}&{} \end{array}\right) ,&{}\\ \left( \begin{array}{ccc} \left( \alpha _{A}\right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}},&{}\\ \root q \of { 1 - \left( 1- \left( \beta _{A}\right) ^{q} \right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}}}&{} \end{array}\right) &{} \end{array}\right) \\ \end{array}\\ \begin{array}{lcl} &{}=&{} \left( \begin{array}{ccc} \left( \left( \mu _{A} \right) ^{1}, \root q \of { 1 - \left( 1- \left( \eta _{A}\right) ^{q} \right) ^{1}}\right) ,&{}\\ \left( \left( \alpha _{A} \right) ^{1}, \root q \of { 1 - \left( 1- \left( \beta _{A}\right) ^{q} \right) ^{1}}\right) &{} \end{array}\right) \\ &{}=&{} \left( \left( \mu _{A}, \eta _{A} \right) , \left( \alpha _{A}, \beta _{A}\right) \right) \\ &{}=&{}{\mathcal {A}}. \end{array} \end{aligned}$$

Therefore, we obtain that \({\mathcal{W}\mathcal{G}}\left( {\mathcal {A}}_{1},{\mathcal {A}}_{2},\ldots ,{\mathcal {A}}_{n} \right) = {\mathcal {A}}\). \(\square \)

Proof of Theorem 9

Then, since \({\mathcal {A}}_{i}\preceq \mathcal {B}_{i}\) for every \(i=1,2,3,\ldots , n\), we have \(\mu _{A_{i}} \le \mu _{B_{i}}\), \( \eta _{A_{i}} \ge \eta _{B_{i}}\), \(\alpha _{A_{i}} \le \alpha _{B_{i}}\) and \( \beta _{A_{i}} \ge \beta _{B_{i}}\), that is

$$\begin{aligned} \mu _{A_{i}}{} & {} \ge \mu _{B_{i}}\nonumber \\ \left( \mu _{A_{i}}\right) ^{\lambda _{i}}{} & {} \ge \left( \mu _{B_{i}}\right) ^{\lambda _{i}} \nonumber \\ \displaystyle \prod ^{n}_{i = 1}\left( \mu _{A_{i}}\right) ^{\lambda _{i}}{} & {} \ge \displaystyle \prod ^{n}_{i = 1}\left( \mu _{B_{i}}\right) ^{\lambda _{i}}. \end{aligned}$$
(29)

It can be similarly proved that

$$\begin{aligned} \displaystyle \prod ^{n}_{i = 1}\left( \alpha _{A_{i}}\right) ^{\lambda _{i}} \ge \displaystyle \prod ^{n}_{i = 1}\left( \alpha _{B_{i}}\right) ^{\lambda _{i}}. \end{aligned}$$
(30)

From these calculations, we obtain

$$\begin{aligned} \left( \eta _{A_{i}}\right) ^{q}{} & {} \le \left( \eta _{B_{i}}\right) ^{q}\nonumber \\ 1- \left( \eta _{A_{i}}\right) ^{q}{} & {} \ge 1- \left( \eta _{B_{i}}\right) ^{q}\nonumber \\ \left( 1- \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}{} & {} \ge \left( 1- \left( \eta _{B_{i}}\right) ^{q}\right) ^{\lambda _{i}}\nonumber \\ \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}{} & {} \ge \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \eta _{B_{i}}\right) ^{q}\right) ^{\lambda _{i}}\nonumber \\ 1-\displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}{} & {} \le 1-\displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \eta _{B_{i}}\right) ^{q}\right) ^{\lambda _{i}}\nonumber \\ \root q \of { 1 -\displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}{} & {} \le \root q \of { 1 -\displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \eta _{B_{i}}\right) ^{q}\right) ^{\lambda _{i}}}. \end{aligned}$$
(31)

Similarly, we can prove

$$\begin{aligned} \root q \of { 1 -\displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \beta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}} \le \root q \of { 1 -\displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \beta _{B_{i}}\right) ^{q}\right) ^{\lambda _{i}}}. \end{aligned}$$
(32)

Therefore, we obtain that, by Eqs. (29), (30), (31), and (32), we have

$$\begin{aligned} \left( \begin{array}{ccc} \left( \begin{array}{ccc} \displaystyle \prod ^{n}_{i = 1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}}, &{}\\ \root q \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \eta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}}&{} \end{array}\right) , &{}\\ \left( \begin{array}{ccc} \displaystyle \prod ^{n}_{i = 1}\left( \alpha _{A_{i}} \right) ^{\lambda _{i}}, &{}\\ \root q \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \beta _{A_{i}}\right) ^{q} \right) ^{\lambda _{i}}}&{} \end{array}\right)&\end{array}\right) \preceq \left( \begin{array}{ccc} \left( \begin{array}{ccc} \displaystyle \prod ^{n}_{i = 1}\left( \mu _{B_{i}} \right) ^{\lambda _{i}}, &{}\\ \root q \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \eta _{B_{i}}\right) ^{q} \right) ^{\lambda _{i}}}&{} \end{array}\right) , &{}\\ \left( \begin{array}{ccc} \displaystyle \prod ^{n}_{i = 1}\left( \alpha _{B_{i}} \right) ^{\lambda _{i}}, &{}\\ \root q \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1- \left( \beta _{B_{i}}\right) ^{q} \right) ^{\lambda _{i}}}&{} \end{array}\right)&\end{array}\right) , \end{aligned}$$

and hence, \({\mathcal{W}\mathcal{G}}\left( {\mathcal {A}}_{1}, \ldots ,{\mathcal {A}}_{n} \right) \preceq {\mathcal{W}\mathcal{G}}\left( \mathcal {B}_{1}, \ldots , \mathcal {B}_{n} \right) \). \(\square \)

Proof of Theorem 10

For the membership grades of \({\mathcal{W}\mathcal{G}}\left( {\mathcal {A}}_{1},\ldots ,{\mathcal {A}}_{n}\right) \), we have

$$\begin{aligned} \displaystyle \bigwedge ^{n}_{i=1} \left( \mu _{i}\right) ^{\lambda _{i}}{} & {} \le \left( \mu _{i} \right) ^{\lambda _{i}} \le \displaystyle \bigvee ^{n}_{i=1} \left( \mu _{i}\right) ^{\lambda _{i}}\nonumber \\ \displaystyle \prod ^{n}_{i=1}\displaystyle \bigwedge ^{n}_{i=1} \left( \mu _{A_{i}}\right) ^{\lambda _{i}}{} & {} \le \displaystyle \prod ^{n}_{i=1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}} \le \displaystyle \prod ^{n}_{i=1}\displaystyle \bigvee ^{n}_{i=1} \left( \mu _{A_{i}}\right) ^{\lambda _{i}} \nonumber \\ \displaystyle \bigwedge ^{n}_{i=1} \left( \mu _{A_{i}}\right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}}{} & {} \le \displaystyle \prod ^{n}_{i=1}\left( \mu _{A_{i}} \right) ^{\lambda _{i}} \le \displaystyle \bigvee ^{n}_{i=1} \left( \mu _{A_{i}}\right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}}\nonumber \\ \displaystyle \bigwedge ^{n}_{i=1} \left( \mu _{A_{i}}\right){} & {} \le \displaystyle \prod ^{n}_{i=1}\left( \mu _{i}\right) ^{\lambda _{i}} \le \displaystyle \bigvee ^{n}_{i=1} \left( \mu _{A_{i}}\right) . \end{aligned}$$
(33)

Similarly we can prove

$$\begin{aligned} \displaystyle \bigwedge ^{n}_{i=1} \left( \alpha _{A_{i}}\right) \le \displaystyle \prod ^{n}_{i=1}\left( \alpha _{i}\right) ^{\lambda _{i}} \le \displaystyle \bigvee ^{n}_{i=1} \left( \alpha _{A_{i}}\right) . \end{aligned}$$
(34)

For the non-membership grades of \({\mathcal{W}\mathcal{G}}\left( {\mathcal {A}}_{1},\ldots ,{\mathcal {A}}_{n}\right) \), we have

$$\begin{aligned} \displaystyle \bigwedge ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}{} & {} \le \left( \eta _{A_{i}}\right) ^{q}\nonumber \\ 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}{} & {} \ge 1 - \left( \eta _{A_{i}}\right) ^{q}\nonumber \\ \left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}{} & {} \ge \left( 1 - \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}\nonumber \\ \displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}{} & {} \ge \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}\nonumber \\ 1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}{} & {} \le 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}\nonumber \\ \root q \of { 1 -\displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}{} & {} \le \root q \of { 1- \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}\nonumber \\ \root q \of { 1-\left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) ^{ \displaystyle \sum ^{n}_{i = 1}\lambda _{i} }}{} & {} \le \root q \of { 1 - \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}\nonumber \\ \root q \of { 1-\left( 1-\displaystyle \bigwedge ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) }{} & {} \le \root q \of { 1- \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}\nonumber \\ \displaystyle \bigwedge ^{n}_{i=1}\eta _{A_{i}}{} & {} \le \root q \of { 1- \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}} \end{aligned}$$
(35)

and

$$\begin{aligned} \displaystyle \bigvee ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}{} & {} \ge \left( \eta _{A_{i}}\right) ^{q}\nonumber \\ 1-\displaystyle \bigvee ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}{} & {} \le 1-\left( \eta _{A_{i}}\right) ^{q}\nonumber \\ \left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}{} & {} \le \left( 1-\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}\nonumber \\ \displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}{} & {} \le \displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}\nonumber \\ 1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}{} & {} \ge 1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}\nonumber \\ \root q \of {1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}{} & {} \ge \root q \of {1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}\nonumber \\ \root q \of {1-\left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) ^{\displaystyle \sum ^{n}_{i = 1}\lambda _{i}}}{} & {} \ge \root q \of {1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}\nonumber \\ \root q \of {1-\left( 1-\displaystyle \bigvee ^{n}_{i=1}\left( \eta _{A_{i}}\right) ^{q}\right) ^{1}}{} & {} \ge \root q \of {1-\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}\nonumber \\ \displaystyle \bigvee ^{n}_{i=1}\eta _{A_{i}}{} & {} \ge \root q \of {1 -\displaystyle \prod ^{n}_{i = 1}\left( 1-\left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}. \end{aligned}$$
(36)

Then, by Eqs. (35) and (36), we get

$$\begin{aligned} \displaystyle \bigwedge ^{n}_{i=1}\eta _{A_{i}} \le \root q \of { 1- \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \eta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}\le \displaystyle \bigvee ^{n}_{i=1}\eta _{A_{i}}. \end{aligned}$$
(37)

Similarly, we can show that

$$\begin{aligned} \displaystyle \bigwedge ^{n}_{i=1}\beta _{A_{i}} \le \root q \of { 1- \displaystyle \prod ^{n}_{i = 1}\left( 1 - \left( \beta _{A_{i}}\right) ^{q}\right) ^{\lambda _{i}}}\le \displaystyle \bigvee ^{n}_{i=1}\beta _{A_{i}}. \end{aligned}$$
(38)

Therefore, by Eqs. (33), (34), (37), and (38), we have \({\mathcal {A}}^{-} \preceq {\mathcal{W}\mathcal{G}}\left( {\mathcal {A}}_{1},{\mathcal {A}}_{2},\ldots ,{\mathcal {A}}_{n}\right) \preceq {\mathcal {A}}^{+}\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panpho, P., Yiarayong, P. (pq)-Rung linear Diophantine fuzzy sets and their application in decision-making. Comp. Appl. Math. 42, 324 (2023). https://doi.org/10.1007/s40314-023-02456-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02456-x

Keywords

Mathematics Subject Classification

Navigation