Skip to main content
Log in

Color image restoration with mixed Gaussian–Cauchy noise and blur

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel model for recovering color images that have been affected by mixed Gaussian Cauchy noise and blur. Our approach utilizes the \(l_1\)-norm of the wavelet base as the regularization term and combines the Gaussian and Cauchy noise in a summation term as the data fidelity term. To solve this minimization model, we employ the alternating direction method of multipliers (ADMM). We evaluate the performance of our model by conducting experiments with different types of blur and mixed Gaussian–Cauchy noise. The experimental results demonstrate that our method surpasses other existing approaches in terms of PSNR values, SSIM values, and visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achim A, Kuruoglu E (2005) Image denoising using bivariate K-stable distributions in the complex wavelet domain. IEEE Signal Process Lett 12:17–20

    Article  Google Scholar 

  • Aubert G, Aujol J-F (2008) A variational approach to removing multiplicative noise. SIAM J Appl Math 68:925–946

    Article  MathSciNet  MATH  Google Scholar 

  • Aubert G, Kornprobst P (2006) Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Appl. Math. Sci. 147, Springer, New York

  • Brownrigg D (1984) The weighted median filter. Commun. Ass. Comput. Mach. 27:807–818

    Google Scholar 

  • Bonettini S, Ruggiero V (2012) On the convergence of primal-dual hybrid gradient algorithms for total variation image restoration. J. Math. Imaging Vis. 44:2361–253

    Article  MathSciNet  MATH  Google Scholar 

  • Bovik A (2000) Handbook of Image and Video Processing. Academic Press, New York

    MATH  Google Scholar 

  • Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends. Mach Learn 3:1–122

    MATH  Google Scholar 

  • Cai MC, Jin XQ (2005) BCCB preconditioners for solving linear systems from delay differential equations, Pergamon Press, Inc

  • Chambolle A (2004) An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20:89–97

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle A, Pock T (2011) A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40:120–145

    Article  MathSciNet  MATH  Google Scholar 

  • Chan R, Dong Y, Hintermuller M (2010) An effcient two-phase \(L_1\)-TV method for restoring blurred images with impulse noise. IEEE Trans Image Process 19:1731–1739

    Article  MathSciNet  MATH  Google Scholar 

  • Chan TF, Golub GH, Mulet P (1999) A nonlinear primal-dual method for total variation-based image restoration. SIAM J Sci Comput 20:1964–1977

    Article  MathSciNet  MATH  Google Scholar 

  • Chan R, Jin XQ (2007) An introduction to iterative Toeplitz solvers. Fundamentals of Algorithms, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

  • Chang Y, Kadaba S, Doerschuk P, Gelfand S (2001) Image restoration using recursive Markov random field models driven by Cauchy distributed noise. IEEE Signal Process Lett 8:65–66

    Article  Google Scholar 

  • Condat L (2013) A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J Optim Theory Appl 158:460–479

    Article  MathSciNet  MATH  Google Scholar 

  • Dong B, Ji H, Shen ZW, Xu YH (2012) Wavelet frame based blind image inpainting. Appl Comput Harmon Anal 32:268–279

    Article  MathSciNet  MATH  Google Scholar 

  • Dong Y, Zeng T (2013) A convex variational model for restoring blurred images with multiplicative noise. SIAM J. Imaging Sci. 6:1598–1625

    Article  MathSciNet  MATH  Google Scholar 

  • Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15:3736–3745

    Article  MathSciNet  Google Scholar 

  • Federica S, Dong YQ, Zeng TY (2015) Variational Approach for Restoring Blurred Images with Cauchy Noise. SIAM J. Imaging Sci. 2:1894–1922

    MathSciNet  MATH  Google Scholar 

  • Figueiredo B, Bioucas-Dias J (2010) Restoration of Poissonian images using alternating direction optimization. IEEE Trans Image Process 19:3133–3145

    Article  MathSciNet  MATH  Google Scholar 

  • Figueiredo M, Nowak R (2003) An EM algorithm for wavelet-based image restoration. IEEE Trans Image Process 12(8):906–916

    Article  MathSciNet  MATH  Google Scholar 

  • Gilboa G, Osher S (2008) Nonlocal operators with applications to image processing. Multiscale Model Simul 7:1005–1028

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein T, Osher S (2009) The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2:323–343

    Article  MathSciNet  MATH  Google Scholar 

  • Grimmett G, Welsh D (1986) Probability: An Introduction. Oxford Science Publications, London

    MATH  Google Scholar 

  • Hintermuller M, Langer A (2013) Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed l1 l2 data-fidelity in image processing. SIAM J. Imaging Sci. 6:2134–2173

    Article  MathSciNet  MATH  Google Scholar 

  • Huang Y-M, Ng MK, Wen Y-W (2009) A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2:20–40

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang H, Haddad R (1995) Adaptive median filters: New algorithms and results. IEEE Trans Image Process 4:499–502

    Article  Google Scholar 

  • Idan M, Speyer J (2010) Cauchy estimation for linear scalar systems. IEEE Trans. Automat. Control 55:1329–1342

    Article  MathSciNet  MATH  Google Scholar 

  • Kuruoglu E, Fitzgerald W, Rayner P (1998) Near optimal detection of signals in impulsive noise modeled with asymmetric alpha-stable distribution. IEEE Commun Lett 2:282–284

    Article  Google Scholar 

  • Langer A (2017) Automated parameter selection in the l1-l2-tv model for removing gaussian plus impulse noise. Inverse Prob 33:1–40

    Article  Google Scholar 

  • Le T, Chartrand T, Asaki T (2007) A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vision 27:257–263

    Article  MathSciNet  Google Scholar 

  • Mei J, Dong Y, Huang T, Yin W (2018) Cauchy Noise Removal by Nonconvex ADMM with Convergence Guarantees. J Sci Comput 74:743–766

    Article  MathSciNet  MATH  Google Scholar 

  • Nikolova M (2004) A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision 20:90–120

    Article  MathSciNet  MATH  Google Scholar 

  • Nolan J (1997) Numerical calculation of stable densities and distribution functions. Comm. Statist. Stochastics Models 13:759–774

    Article  MathSciNet  MATH  Google Scholar 

  • Setzer S, Steidl G, Teuber T (2010) Deblurring Poissonian images by split Bregman techniques. J Visual Commun Image Represent 21:193–199

    Article  Google Scholar 

  • Wan T, Canagarajah N, Achim A (2011) Segmentation of noisy colour images using Cauchy distribution in the complex wavelet domain. IET Image Process. 5:159–170

    Article  Google Scholar 

  • Wu C, Tai X-C (2010) Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3:300–339

    Article  MathSciNet  MATH  Google Scholar 

  • Yang J, Yin W, Zhang Y, Wang Y (2009) A fast algorithm for edge-preserving variational multi-channel image restoration. SIAM J. Imaging Sci. 2:569–592

    Article  MathSciNet  MATH  Google Scholar 

  • Yang J, Zhang Y, Yin W (2009) An effcient tvl1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J Sci Comput 31:2842–2865

    Article  MathSciNet  MATH  Google Scholar 

  • Yang J, Zhang Y, Yin W (2010) A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data. IEEE J. Selected Topics Signal Process 4:288–297

    Article  Google Scholar 

  • Zhou W, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13:600–612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxi Ni.

Additional information

Communicated by Antonio José Silva Neto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, X., Ni, G. & Zeng, T. Color image restoration with mixed Gaussian–Cauchy noise and blur. Comp. Appl. Math. 42, 347 (2023). https://doi.org/10.1007/s40314-023-02461-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02461-0

Keywords

Mathematics Subject Classification

Navigation