Skip to main content
Log in

A modified multivariate spectral gradient projection method for nonlinear complementarity problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We present a sufficient condition for monotonicity of the nonlinear nonsmooth system generated by Fischer–Burmeister function associated with nonlinear complementarity problem. Based on the presented condition, the nonlinear complementarity problem considered in this paper is equivalently formulated to a nonsmooth monotone system. We then propose a modified multivariate spectral gradient projection method for the resulting system, and establish the global convergence without smoothness and Lipschitz condition. Preliminary numerical experiments show that, compared to some existing methods, the proposed method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1

Similar content being viewed by others

Data availability

The data (source codes and testing problems) underlying this article are available in the article.

Notes

  1. A function \(\phi :\mathbb {R}^2 \rightarrow \mathbb {R}\) is called NCP-function, if \(\forall ~(a,b) \in \mathbb {R}^2\), we have: \(\phi (a,b)=0 \Longleftrightarrow (a,b) \ge 0\) and \(ab=0\).

References

  • Abubakar AB, Kumam P (2019) A descent Dai-Liao conjugate gradient method for nonlinear equations. Numer Alg 81(1):197–210

    Article  MathSciNet  MATH  Google Scholar 

  • Amini K, Kamandi A (2015) A new line search strategy for finding separating hyperplane in projection-based methods. Numer Alg 70(3):559–570

    Article  MathSciNet  MATH  Google Scholar 

  • Chen BL, Ma CF (2011) A new smoothing broyden-like method for solving nonlinear complementarity problem with a \(P_0\)-function. J Glob Optim 51(3):473–495

    Article  MATH  Google Scholar 

  • Chen JS, Pan SH (2008) A family of NCP functions and a descent method for the nonlinear complementarity problem. Comput Optim Appl 40(3):389–404

    Article  MathSciNet  MATH  Google Scholar 

  • Chen BT, Chen XJ, Kanzow C (2000) A penalized Fischer-Burmeister NCP-function. Math Program 88(1):211–216

    Article  MathSciNet  MATH  Google Scholar 

  • Facchinei F, Kanzow C (1997) A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math Program 76(3):493–512

    Article  MathSciNet  MATH  Google Scholar 

  • Fan B (2015) A smoothing Broyden-like method with a nonmonotone derivative-free line search for nonlinear complementarity problems. J Comput Appl Math 290:641–655

    Article  MathSciNet  MATH  Google Scholar 

  • Ferris MC, Pang JS (1997) Engineering and economic applications of complementarity problems. SIAM Rev 39(4):669–713

    Article  MathSciNet  MATH  Google Scholar 

  • Harker PT, Pang JS (1990) Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math Program 48(1–3):161–220

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang HY (1996) Unconstrained minimization approaches to nonlinear complementarity problems. J Glob Optim 9(2):169–181

    Article  MathSciNet  MATH  Google Scholar 

  • Kanzow C, Pieper H (1999) Jacabian smoothing Newton methods for nonlinear complementarity problems. SIAM J Optimiz 9(2):342–373

    Article  MATH  Google Scholar 

  • La Cruz W (2017) A spectral algorithm for large-scale systems of nonlinear monotone equations. Numer Alg 76(4):1109–1130

    Article  MathSciNet  MATH  Google Scholar 

  • Luca TD, Facchinei F, Kanzow C (1996) A semismooth equation approach to the solution of nonlinear complementarity problems. Math Program 75(3):407–439

    Article  MathSciNet  MATH  Google Scholar 

  • Ma CF (2010) A new smoothing and regularization newton method for \(P_0\)-NCP. J Glob Optim 48(2):241–261

    Article  MATH  Google Scholar 

  • Ma CF, Chen XH (2008) The convergence of a one-step smoothing newton method for \(P_0\)-\(NCP\) based on a new smoothing \(NCP\)-function. J Comput Appl Math 216(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Mangasarian OL, Solodov MV (1999) A linearly convergent derivative-free descent method for strongly monotone complementarity problems. Comput Optim Appl 14(1):5–16

    Article  MathSciNet  MATH  Google Scholar 

  • Moré JJ (1996) Global methods for nonlinear complementarity problems. Math Oper Res 21(3):589–614

    Article  MathSciNet  MATH  Google Scholar 

  • Nie PY, Fan JY (2005) A derivative-free filter method for solving nonlinear complementarity problems. Appl Math Comput 161(3):787–797

    Article  MathSciNet  MATH  Google Scholar 

  • Ou YG, Li JY (2018) A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints. J Appl Math Comput 56(1):195–216

    Article  MathSciNet  MATH  Google Scholar 

  • Solodov MV, Svaiter BF (1998) A globally convergent inexact Newton method for systems of monotone equations, reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods. Kluwer Academic Publishers, New York

    Google Scholar 

  • Yang B, Gao L (1991) An efficient implementation of merrill’s method for sparse or partially separable systems of nonlinear equations. SIAM J Optim 1(2):206–221

    Article  MathSciNet  MATH  Google Scholar 

  • Yang J, Liu HW (2018) A modified projected gradient method for monotone variational inequalities. J Optim Theory Appl 179(1):197–211

    Article  MathSciNet  MATH  Google Scholar 

  • Yang YF, Qi LQ (2005) Smoothing trust region methods for nonlinear complementarity problems with \(P_0\)-functions. Ann Oper Res 133(1–4):99–117

    Article  MathSciNet  MATH  Google Scholar 

  • Yu GH, Niu SZ, Ma JH (2013) Multivariate spectral gradient projection methodfor nonlinear monotone equations with convex constraints. J Ind Manag Optim 9(1):117–129

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Peng Z (2020) A modulus-based nonmonotone line search method for nonlinear complementarity problems. Appl Math Comput 387:125175

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao YB, Li D (2001) Monotonicity of fixed point and normal mappings associated with variational inequality and its application. SIAM J Optim 11(4):962–973

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu JG, Liu HW, Liu CH, Cong WJ (2011) A nonmonotone derivative-free algorithm for nonlinear complementarity problems based on the new generalized penalized Fischer-Burmeister merit function. Numer Alg 58(4):573–591

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported partly by the Natural Science Foundation of China under Grant No. 12071398, the Natural Science Foundation of Hunan Province under Grant No. 2020JJ4567, and the Science Foundation of Provincial Education Department of Hunan under Grant No. 18A351.

Appendix

Appendix

Example 1

(La Cruz 2017) The function f(x) is endowed with the component as follows:

$$\begin{aligned} f_i(x)=e^{x_i} -1, \quad i\in [n]. \end{aligned}$$

Example 2

The function f(x) is endowed with the component as follows:

$$\begin{aligned} f_i(x)=\arctan (x_i) - \frac{\pi }{6}, \quad i\in [n]. \end{aligned}$$

Example 3

This problem is a modification of Example 1, and the function f(x) is endowed with the component as follows:

$$\begin{aligned} f_i(x)=e^{\frac{i}{n}x_i} - 1, \quad i\in [n]. \end{aligned}$$

Example 4

(Abubakar and Kumam 2019) The function f(x) is endowed with the component as follows:

$$\begin{aligned} f_i(x)=\ln (x_i + 1) - \frac{x_i}{n}, \quad i\in [n]. \end{aligned}$$

Example 5

(Fan 2015) This is the Kojima–Shindo problem, and the function f(x) is given by

$$\begin{aligned} f(x)= \left( \begin{array}{c} 3x_1^2 + 2x_1x_2 + 2x_2^2 + x_3 + 3x_4 - 6 \\ 2x_1^2 + x_1 + x_2^2 + 3x_3 + 2x_4 - 2 \\ 3x_1^2 + x_1x_2 + 2x_2^2 + 2x_3 + 3x_4 - 1 \\ x_1^2 + 3x_2^2 + 2x_3 + 3x_4 - 3 \end{array}\right) . \end{aligned}$$

Example 6

(La Cruz 2017) The function f(x) is endowed with the component as follows:

$$\begin{aligned} f_i(x)=2x_i -\sin (|x_i|), \quad i\in [n]. \end{aligned}$$

Example 7

(Ou and Li 2018) The function f(x) is endowed with the component as follows:

$$\begin{aligned} f_i(x)=x_i - \sin \left( |x_i - 1|\right) , \quad i\in [n]. \end{aligned}$$

Example 8

(Ou and Li 2018) The function f(x) is endowed with the component as follows:

$$\begin{aligned} f_i(x)=\ln (|x_i| + 1) - \frac{x_i}{n}, \quad i\in [n]. \end{aligned}$$

Example 9

(Yang and Gao 1991) A tridiagonal exponential function \(f_h(x)\), which is endowed with the component as follows:

$$\begin{aligned} f_i(x) = x_i - e^{\cos [h(x_{i-1} + x_i + x_{i+1})]}, \quad i\in [n], \end{aligned}$$

where \(x_0 = x_{n+1} = 0\) and \(h = \frac{1}{n+1}\).

Example 10

A nonsmooth modified of Example 9, which is endowed with the component as follows:

$$\begin{aligned} f_i(x) = x_i - e^{\cos [h|x_{i-1} + x_i + x_{i+1}|]}, \quad i\in [n], \end{aligned}$$

where \(x_0 = x_{n+1} = 0\) and \(h = \frac{1}{n+1}\).

Example 11

(Zhang and Peng 2020) The function f(x) is endowed with the component as follows:

$$\begin{aligned} f_i(x) = \min \left( \min \left( |x_i|, x_i^2 \right) , \max \left( |x_i|, x_i^3 \right) \right) , \quad i\in [n]. \end{aligned}$$

Example 12

The function f(x) is endowed with the component as follows:

$$\begin{aligned} \begin{array}{l} f_1(x) = \frac{1}{n+1}x_1^3 + \frac{1}{n}x_2^2,\\ f_i(x) = -\frac{1}{n}|x_{i-1}| + \frac{i}{n+1}x_i^3 + \frac{1}{n}x_{i+1}^2, \quad i=2,3,\dots ,n-1,\\ f_n(x) = -\frac{1}{n}|x_{n-1}| + \frac{n}{n+1}x_n^3. \end{array} \end{aligned}$$

Example 13

A nonsmooth modification of Example 1, where f(x) is endowed with the component as follows:

$$\begin{aligned} f_i(x)=e^{|x_i|} -1, \quad i\in [n]. \end{aligned}$$

Example 14

The function f(x) is endowed with the component as follows:

$$\begin{aligned} \begin{array}{l} f_1(x) = x_1 + \arctan (x_n) - \cos (x_2) - 1,\\ f_i(x) = x_i + \arctan (x_i) - \cos \left( \frac{x_{n+1} + x_{n-1}}{n}\right) - 1, \quad i=2,3,\ldots ,n-1\\ f_n(x) = x_n + \arctan (x_n) - \cos (\frac{x_n}{n}) - 1. \end{array} \end{aligned}$$

Example 15

The function f(x) is endowed with the component as follows:

$$\begin{aligned} \begin{array}{l} f_1(x) = \sinh (\frac{1}{n} x_1) + x_2 + \frac{1}{n},\\ f_i(x) = \sinh (\frac{i}{n} x_i) + x_{i-1} + x_{i+1} \frac{i}{n}, \quad i=2,3,\dots ,n-1\\ f_n(x) = \sinh (\frac{1}{n} x_1) + x_{n-1} + 1, \end{array} \end{aligned}$$

where \(sinh(\cdot )\) is the hyperbolic sine function, i.e., \(\sinh (t) = \frac{e^t - e^{-t}}{2}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Zhang, X. & Yao, Z. A modified multivariate spectral gradient projection method for nonlinear complementarity problems. Comp. Appl. Math. 42, 323 (2023). https://doi.org/10.1007/s40314-023-02465-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02465-w

Keywords

Mathematics Subject Classification

Navigation