Skip to main content
Log in

Integral representations, extension theorems and walks through dimensions under radial exponential convexity

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider the class of radial exponentially convex functions defined over n-dimensional balls with finite or infinite radii. We provide characterization theorems for these classes, as well as Rudin’s type extension theorems for radial exponentially convex functions defined over n-dimensional balls into radial exponentially convex functions defined over the whole n-dimensional Euclidean space. We furthermore establish inversion theorems for the measures, termed here n-Nussbaum measures, associated with integral representations of radial exponentially convex functions. This in turn allows obtaining recurrence relations between 1-Nussbaum measures and n-Nussbaum measures for a given integer n greater than 1. We also provide a up to now unknown catalogue of radial exponentially convex functions and associated n-Nussbaum measures. We finally turn our attention into componentwise radial exponential convexity over product spaces, with a Rudin extension result and analytical examples of exponentially convex functions and associated Nussbaum measures. As a byproduct, we obtain a parametric model of nonseparable stationary space-time covariance functions that do not belong to the well-known Gneiting class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Berg C, Christensen JPR, Ressel P (1984) Harmonic analysis on semigroups: theory of positive definite and related functions, vol 100. Springer, New York

    Google Scholar 

  • Bernstein S (1929) Sur les fonctions absolument monotones. Acta Math 52(1):1–66

    MathSciNet  Google Scholar 

  • Chen W, Genton MG, Sun Y (2021) Space-time covariance structures and models. Annu Rev Stat Appl 8:191–215

    MathSciNet  Google Scholar 

  • Chilès J, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley, New York

    Google Scholar 

  • Daley DJ, Porcu E (2014) Dimension walks and Schoenberg spectral measures. Proc Am Math Soc 142(5):1813–1824

    MathSciNet  Google Scholar 

  • Devinatz A (1955) The representation of functions as a Laplace-Stieltjes integrals. Duke Math J 22(2):185–191

    MathSciNet  Google Scholar 

  • Eaton ML (1981) On the projections of isotropic distributions. Ann Stat 9(2):391–400

    MathSciNet  Google Scholar 

  • Ehm W, Genton MG, Gneiting T (2003) Stationary covariances associated with exponentially convex functions. Bernoulli 9(4):607–615

    MathSciNet  Google Scholar 

  • Erdélyi A (1953) Higher transcendental functions, vol II. McGraw-Hill, New York

    Google Scholar 

  • Erdélyi A (1954) Tables of integral transforms, vol II. McGraw-Hill, New York

    Google Scholar 

  • Genton MG, Perrin O (2004) On a time deformation reducing nonstationary stochastic processes to local stationarity. J Appl Probab 41(1):236–249

    MathSciNet  Google Scholar 

  • Gneiting T (2002) Compactly supported correlation functions. J Multivar Anal 83(2):493–508

    MathSciNet  Google Scholar 

  • Gneiting T (2002) Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 97:590–600

    MathSciNet  Google Scholar 

  • Gneiting T, Sasvári Z (1999) The characterization problem for isotropic covariance functions. Math Geol 31(1):105–111

    MathSciNet  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2014) Table of integrals, series, and products. Academic Press, Amsterdam

    Google Scholar 

  • Krein MG (1940) Sur le problème du prolongement des fonctions hermitiennes positives et continues. Proc USSR Acad Sci 26(1):17–22

    Google Scholar 

  • Linnik J, Ostrovskii I (1977) Decomposition of random variables and vectors. American Mathematical Society, Providence

    Google Scholar 

  • Loève M (1946) Fonctions aléatoires à décomposition orthogonale exponentielle. La Revue Sci 84:159–162

    MathSciNet  Google Scholar 

  • Matheron G (1965) Les variables régionalisées et leur estimation. Masson, Paris

    Google Scholar 

  • McMillan B (1954) Absolutely monotone functions. Ann Math 60(3):467–501

    MathSciNet  Google Scholar 

  • Nussbaum A (1972) Radial exponentially convex functions. J d’Anal Math 25(1):277–288

    MathSciNet  Google Scholar 

  • Olver FW, Lozier DM, Boisvert RF, Clark CW (2010) NIST handbook of mathematical functions. Cambridge University Press, Cambridge

    Google Scholar 

  • Perrin O, Senoussi R (2000) Reducing non-stationary random fields to stationarity and isotropy using a space deformation. Stat Probab Lett 48(1):23–32

    MathSciNet  Google Scholar 

  • Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic space-time covariance functions. Stoch Environ Res Risk Assess 21(2):113–122

    MathSciNet  Google Scholar 

  • Porcu E, Alegria A, Furrer R (2018) Modeling temporally evolving and spatially globally dependent data. Int Stat Rev 86(2):344–377

    MathSciNet  Google Scholar 

  • Porcu E, Senoussi R, Mendoza E, Bevilacqua M (2020) Reduction problems and deformation approaches to nonstationary covariance functions over spheres. Electron J Stat 14(1):890–916

    MathSciNet  Google Scholar 

  • Porcu E, Furrer R, Nychka D (2021) 30 years of space-time covariance functions. Wiley Interdiscip Rev Comput Stat 13(2):e1512

    MathSciNet  Google Scholar 

  • Porcu E, Feng S, Emery X, Peron A (2023) Rudin extension theorems on product spaces, turning bands, and random fields on balls cross time. Bernoulli 29(2):1464–1475

    MathSciNet  Google Scholar 

  • Prudnikov A, Brychkov Y, Marichev O (1986) Integrals and series, vol 2. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Rudin W (1963) The extension problem for positive-definite functions. Ill J Math 7(3):532–539

    MathSciNet  Google Scholar 

  • Rudin W (1970) An extension theorem for positive-definite functions. Duke Math J 37(1):49–53

    MathSciNet  Google Scholar 

  • Sasvári Z (1994) Positive definite and definitizable functions. Akademie, Berlin

    Google Scholar 

  • Sasvári Z (2006) The extension problem for positive definite functions. a short historical survey. In: Langer M, Luger A, Woracek H (eds) Operator theory and indefinite inner product spaces. Birkhäuser, Basel, pp 365–379

    Google Scholar 

  • Sasvári Z (2013) Multivariate characteristic and correlation functions. De Gruyter, Berlin

    Google Scholar 

  • Schaback R, Wu Z (1996) Operators on radial functions. J Comput Appl Math 73(1–2):257–270

    MathSciNet  Google Scholar 

  • Schoenberg IJ (1938) Metric spaces and completely monotone functions. Ann Math 25(39):811–841

    MathSciNet  Google Scholar 

  • Silverman R (1957) Locally stationary random processes. IRE Trans Inf Theory 3(3):182–187

    Google Scholar 

  • Silverman RA (1959) A matching theorem for locally stationary random processes. Commun Pure Appl Math 12(2):373–383

    MathSciNet  Google Scholar 

  • Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396

    MathSciNet  Google Scholar 

  • Widder DV (1934) Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral. Bull Am Math Soc 40(4):321–326

    MathSciNet  Google Scholar 

  • Yaglom A (1987) Correlation theory of stationary and related random functions. volume I: basic results. Springer, New York

    Google Scholar 

Download references

Acknowledgements

This paper is based upon work supported by the National Agency for Research and Development of Chile under grants ANID FONDECYT 1210050 and ANID PIA AFB230001 (X. Emery), and by the Khalifa University of Science and Technology under Award No. FSU-2021-016 (E. Porcu). The authors are grateful to the anonymous reviewers, the Associate Editor for their careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Porcu.

Additional information

Communicated by Jose Alberto Cuminat.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emery, X., Porcu, E. Integral representations, extension theorems and walks through dimensions under radial exponential convexity. Comp. Appl. Math. 43, 28 (2024). https://doi.org/10.1007/s40314-023-02529-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02529-x

Keywords

Mathematics Subject Classification

Navigation