Skip to main content
Log in

Comparative analysis for fractional Laplace and Helmholtz equations on sphere with mixed boundary conditions

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we use the fractional Legendre transform to treat the mixed boundary value problems on the unite sphere. We study the Laplace and Helmholtz operators on the unite sphere and coincide these operators with the fractional Sturm–Liouville problems. We apply the fractional Legendre transform to establish series approximations for the solutions of these problems. To obtain the unknown parts of solutions, we derive the Fredholm integral equations with the infinite series as separable kernels. We employ a technique for the integral equations to approximate the solutions in terms of the resolvent kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No underlying data were collected or produced in this study.

References

  • Aghili A, Ansari A (2010) Solving partial fractional differential equations using the \({{\cal{L} }}_A\)-transform. Asian Eur J Math 3(2):209–220

    Article  MathSciNet  MATH  Google Scholar 

  • Aghili A, Ansari A (2011) Solution to system of partial fractional differential equation using the \({{\cal{L} }}_2\)-transform. Anal Appl 9(1):1–9

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari A (2015a) Some inverse fractional Legendre transforms of gamma function form. Kodai Math J 38(3):658–671

  • Ansari A (2015b) On finite fractional Sturm–Liouville transforms. Integr Transforms Spec Funct 26(1):51–64

  • Ansari A (2021) Fundamental solution of a multi-dimensional distributed order fractional diffusion equation. Eur Phys J Plus 136:431

    Article  Google Scholar 

  • Ansari A, Derakhshan MH, Askari H (2022) Distributed order fractional diffusion equation with fractional Laplacian in axisymmetric cylindrical configuration. Commun Nonlinear Sci Numer Simul 113:106590

    Article  MathSciNet  MATH  Google Scholar 

  • Barnyak M. Ya. (2017) Solutions of the Laplace equation satisfying the condition of impermeability on a spherical segment. J Math Sci 220:254–264

    Article  MathSciNet  MATH  Google Scholar 

  • Bas E (2013) Fundamental spectral theory of fractional singular Sturm–Liouville operator. J Funct Spaces. Article ID 915830:1–7

  • Ben-Aryeh Y (2021) Hot spots in two metallic spheres system related to Laplace equation solutions with bispherical coordinates. Appl Phys B 127:157

    Article  Google Scholar 

  • Chapko R, Johansson BT (2017) Boundary-integral approach to the numerical solution of the Cauchy problem for the Laplace equation. Ukr Math J 68:1929–1948

    Article  MathSciNet  MATH  Google Scholar 

  • Churchill RV (1953) New operational mathematics: the operational calculus of Legendre transforms, technical report no.1, project 2137 ordnance corps, US army, contract no. DA-20-018-ORD-12916

  • Churchill RV (1954) The operational calculus of Legendre transforms. J Math Phys 33:165–178

    Article  MathSciNet  MATH  Google Scholar 

  • Churchill RV, Dolph CL (1954) Inverse transforms of products of Legendre transforms. Proc Am Math Soc 5:93–100

    Article  MathSciNet  MATH  Google Scholar 

  • Ciesielski TM, Klimek M, Blaszczyk T (2017) The fractional Sturm–Liouville problem-numerical approximation and application in fractional diffusion. J Comput Appl Math 317:573–588

    Article  MathSciNet  MATH  Google Scholar 

  • Debnath L, Bhatta D (2007) Integral transforms and their applications, 2nd edn. Chapman & Hall, New York

    MATH  Google Scholar 

  • Derakhshan MH, Ansari A (2019a) Numerical approximation to Prabhakar fractional Sturm–Liouville problem. Comput Appl Math 38:71

  • Derakhshan MH, Ansari A (2019b) Fractional Sturm–Liouville problems for Weber fractional derivatives. Int J Comput Math 96(2):217–237

  • Duffy DG (2008) Mixed boundary value problems. Chapman & Hall, Boca Raton

    Book  MATH  Google Scholar 

  • Eshaghi S, Ansari A (2017) Finite fractional Sturm–Liouville transforms for generalized fractional derivatives. Iran J Sci Technol 41(4):931–937

    Article  MathSciNet  MATH  Google Scholar 

  • Fabrikant VI (1991) Mixed boundary value problems of potential theory and their applications in engineering. Kluwer Academic Publishers, New York

    MATH  Google Scholar 

  • Garatea G, Estevez J, Grana M (2022) ADITU: a mesh-free formulation for the solution of Helmholtz equation in bounded and unbounded domains. SoftwareX 19:101111

    Article  Google Scholar 

  • Kanwal RP (1971) Linear integral equations, theory and technique. Academic Press, London

    MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Klimek M, Agrawal OP (2012) On a regular fractional Sturm–Liouville problem with derivatives of order in (0,1). In: Proceedings of the 13th international carpathian control conference, Vysoke Tatry (Podbanske), Slovakia, 28–31 May 2012. https://doi.org/10.1109/CarpathianCC.2012.6228655

  • Klimek M, Agrawal OP (2013) Fractional Sturm–Liouville problem. Comput Math Appl 66:795–812

    Article  MathSciNet  MATH  Google Scholar 

  • Klimek M, Odzijewicz T, Malinowska AB (2014) Variational methods for the fractional Sturm–Liouville problem. J Math Anal Appl 416(1):402–426

    Article  MathSciNet  MATH  Google Scholar 

  • Lebedev NN (1972) Special functions & their applications. Dover Publications, New York

    MATH  Google Scholar 

  • Li J, Chen W, Fu Z (2018) A modified dual-level algorithm for large-scale three-dimensional Laplace and Helmholtz equation. Comput Mech 62:893–907

    Article  MathSciNet  MATH  Google Scholar 

  • Panda S, Hazra G (2014) Boundary perturbations and the Helmholtz equation in three dimensions. Eur Phys J Plus 129:53

    Article  Google Scholar 

  • Pham DT, Le T (2017) A posteriori error estimation for the Laplace–Beltrami equation on spheres with spherical splines. Comput Math Appl 74(10):2298–2320

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Prudnikov AP, Brychkov YuA, Marichev OI (1986) Integrals and series, elementary functions, vol 1. Taylor & Francis, London

    MATH  Google Scholar 

  • Rivero M, Trujillo JJ, Velasco MP (2013) A fractional approach to the Sturm–Liouville problem. Cent Eur J Phys 11(10):1246–1254

    Google Scholar 

  • Sneddon IN (1966) Mixed boundary value problems in potential theory. North Holland Publishing Company, New York

    MATH  Google Scholar 

  • Sneddon IN (1979) The use of integral transforms. Mac Graw-Hill, New York

    MATH  Google Scholar 

  • Tranter CJ (1950) Legendre transforms. Q J Math 2(1):1–8

    Article  MathSciNet  MATH  Google Scholar 

  • Zayernouri M, Karniadakis GE (2013) Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J Comput Phys 252(1):495–517

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ansari.

Additional information

Communicated by Roberto Garrappa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A. Comparative analysis for fractional Laplace and Helmholtz equations on sphere with mixed boundary conditions. Comp. Appl. Math. 42, 369 (2023). https://doi.org/10.1007/s40314-023-02533-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02533-1

Keywords

Mathematics Subject Classification

Navigation