Skip to main content
Log in

An adapted energy dissipation law-preserving numerical algorithm for a phase-field surfactant model

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The phase-field surfactant model is popular to study the dynamics of surfactant-laden phase separation in a binary mixture. In this work, we numerically investigate the \(H^{-1}\)-gradient flow based phase-field surfactant mathematical model using an energy dissipation-preserving numerical method. The proposed method adapts a Lagrange multiplier method. The present method not only preserves the unconditional stability, but also satisfies the original energy dissipation law, which is different from the modified energy dissipation laws estimated by the scalar auxiliary variable and invariant energy quadratization methods. An effective scheme is introduced to solve the weakly coupled discrete equations. In one time cycle, we only need to calculate four linear, fully decoupled discrete equations with constant coefficients and compute two nonlinear algebraic equations using Newton’s iteration. The computational experiments indicate that the proposed method is accurate and satisfies the original energy stability. Moreover, the long-time behaviors of surfactant-laden phase separation can also be well simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Statement

Data are available upon reasonable request.

References

  • Abazari R, Rezazadeh H, Akinyemi L, Inc M (2022) Numerical simulation of a binary alloy of 2D Cahn-Hilliard model for phase separation. Comput Appl Math 41:389

    Article  MathSciNet  Google Scholar 

  • Aihara S, Takaki T, Takada N (2019) Multi-phase-field modeling using a conservative Allen-Cahn equation for multiphase flow. Comput Fluid 178:141–151

    Article  MathSciNet  Google Scholar 

  • Backofen R, Wise SM, Salvalaglio M, Voigt A (2019) Convexity splitting in a phase field model for surface diffusion. Int J Numer Anal Mod 16(2):192–209

    MathSciNet  Google Scholar 

  • Cheng Q, Wang C (2021) Error estimate of second order accurate scalar auxiliary variable (SAV) scheme for the thin film epitaxial models. Adv Comput Math Mech 13:1318–1354

    Article  Google Scholar 

  • Cheng Q, Liu C, Shen J (2020) A new Lagrange multiplier approach for gradient flows. Comput Methods Appl Mech Eng 367:113070

    Article  MathSciNet  ADS  Google Scholar 

  • Chiu P-H (2019) A coupled phase field framework for solving incompressible two-phase flows. J Comput Phys 392:115–140

    Article  MathSciNet  ADS  Google Scholar 

  • Cui N, Wang P, Li Q (2022) A second-order BDF scheme for the Swift-Hohenberg gradient flows with quadratic-cubic nonlinearity and vacancy potential. Comput Appl Math 41:85

    Article  MathSciNet  CAS  Google Scholar 

  • Dong L, Wang C, Wise SM, Zhang Z (2021) A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters. J Comput Phys 442:110451

    Article  MathSciNet  Google Scholar 

  • Gao Y, Li R, Mei L, Lin Y (2020) A second-order decoupled energy stable numerical scheme for Cahn-Hilliard-Hele-Shaw system. Appl Numer Math 157:338–355

    Article  MathSciNet  Google Scholar 

  • Gu S, Zhang H, Zhang Z (2014) An energy-stable finite difference scheme for the binary fluid-surfactant system. J Comput Phys 270:416–431

    Article  MathSciNet  ADS  Google Scholar 

  • Guan Z, Lowengrub JS, Wang C, Wise SM (2014) Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations. J Comput Phys 277:48–71

    Article  MathSciNet  ADS  Google Scholar 

  • Laradji M, Guo H, Grant M, Zuckermann MJ (1992) The effect of surfactants on the dynamics of of phase separation. J Phys Condens Matter 3(32):6715

    Article  ADS  Google Scholar 

  • Lee HG (2021) Stability condition of the second-order SSP-IMEX-RK method for the Cahn-Hilliard equation. Mathematics 8(1):11

    Article  MathSciNet  Google Scholar 

  • Lee D, Kim J (2016) Comparison study of the conservative Allen-Cahn and the Cahn-Hilliard equations. Math Comput Simul 119:35–56

    Article  MathSciNet  Google Scholar 

  • Lee D, Kim Y (2020) Novel mass-conserving Allen-Cahn equation for the boundedness of an order parameter. Commun Nonlinear Sci Numer Simulat 85:105224

    Article  MathSciNet  Google Scholar 

  • Li X, Shen J, Rui H (2019) Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Math Comp 88:2047–2068

    Article  MathSciNet  Google Scholar 

  • Li Q, Mei L, Li Y (2021) Efficient second-order unconditionally stable numerical schemes for the modified phase field crystal model with long-range interaction. J Comput Appl Math 389:113335

    Article  MathSciNet  Google Scholar 

  • Li Y, Liu R, Xia Q, He C, Li Z (2022) First- and second-order unconditionally stable direct discretization methods for multi-component Cahn-Hilliard system on surfaces. J Comput Appl Math 401:113778

    Article  MathSciNet  Google Scholar 

  • Liang H, Zhang C, Du R, Wei Y (2020) Lattice Boltzmann method for fractional Cahn-Hilliard equation. Commun Nonlinear Sci Numer Simulat 91:105443

    Article  MathSciNet  Google Scholar 

  • Liu Z, Li X (2020) Two fast and efficient linear semi-implicit approaches with unconditional energy stability for nonlocal phase field crystal equation. Appl Numer Math 150:491–506

    Article  MathSciNet  Google Scholar 

  • Qin Y, Wang C, Zhang Z (2021) A positivity-preserving and convergent numerical scheme for the binary fluid-surfactant system. Int J Numer Anal Model 18(3):399–425

    MathSciNet  Google Scholar 

  • Shi Y, Tang GH, Cheng LH, Shuang HQ (2019) An improved phase-field-based lattice Boltzmann model for droplet dynamics with soluble surfactant. Comput Fluids 179:508–520

    Article  MathSciNet  Google Scholar 

  • Shin J, Lee HG (2021) A linear, high-order, and unconditionally energy stable scheme for the epitaxial thin film growth model without slope selection. Appl Numer Math 163:30–42

    Article  MathSciNet  Google Scholar 

  • Soligo G, Roccon A, Soldati A (2019) Mass-conservation-improved phase field methods for turbulent multiphase flow simulation. Acta Mech 230:683–696

    Article  MathSciNet  Google Scholar 

  • Sun M, Feng X, Wang K (2020) Numerical simulation of binary fluid-surfactant phase field model coupled with geometric curvature on the curved surface. Comput Methods Appl Mech Eng 367:113123

    Article  MathSciNet  ADS  Google Scholar 

  • Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Academic press, New York

    Google Scholar 

  • Wang M, Huang Q, Wang C (2021) A second order accurate scalar auxiliary variable (SAV) numerical method for the square phase field crystal equation. J Sci Comput 88(2):33

    Article  MathSciNet  Google Scholar 

  • Yang X (2018) Numerical approximations for the Cahn-Hilliard phase field model of the binary fluid-surfactant system. J Sci Comput 74:1533–1553

    Article  MathSciNet  Google Scholar 

  • Yang J, Kim J (2021) An improved scalar auxiliary variable (SAV) approach for the phase-field surfactant model. Appl Math Model 90:11–29

    Article  MathSciNet  Google Scholar 

  • Yang J, Kim J (2021) Linear, second-order accurate, and energy stable scheme for a ternary Cahn-Hilliard model by using Lagrange multiplier approach. Acta Appl Math 172:10

    Article  MathSciNet  Google Scholar 

  • Yang J, Kim J (2022) Numerical simulation and analysis of the Swift-Hohenberg equation by the stabilized Lagrange multiplier approach. Comput Appl Math 41:20

    Article  MathSciNet  Google Scholar 

  • Yang J, Tan Z, Kim J (2022) Linear and fully decoupled scheme for a hydrodynamics coupled phase-field surfactant system based on a multiple auxiliary variables approach. J Comput Phys 452:110909

    Article  MathSciNet  Google Scholar 

  • Yoon S, Jeong D, Lee C, Kim H, Kim S, Lee HG, Kim J (2020) Fourier-spectral method for the phase-field equations. Mathematics 8(8):1385

    Article  Google Scholar 

  • Zhang J, Wang C, Wise S, Zhang Z (2021) Structure-preserving, energy stable numerical scheme for a liquid thin film coarsening model. SIAM J Sci Comput 43:A1248–A1272

    Article  MathSciNet  Google Scholar 

  • Zhao X, Liu C (2015) On the existence of global attractor for 3D viscous Cahn-Hilliard equation. Acta Appl Math 199:199–212

    Article  MathSciNet  Google Scholar 

  • Zhu G, Kou J, Sun S, Yao J, Li A (2019) Numerical approximation of a phase-field surfactant model with fluid flow. J Sci Comput 80:223–247

    Article  MathSciNet  Google Scholar 

  • Zhu G, Kou J, Yao B, Wu YS, Yao J, Sun S (2019) Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants. J Fluid Mech 879:327–359

    Article  MathSciNet  CAS  ADS  Google Scholar 

  • Zhu G, Chen H, Li A, Sun S, Yao J (2020) Fully discrete energy stable scheme for a phase-field moving contact line model with variable densities and viscosities. Appl Math Model 83:614–639

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The corresponding author (J.S. Kim) was supported by Korea University Grant. The authors thank the reviewers for the constructive comments on the revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kim.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Communicated by Maicon Ribeiro Correa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Kim, J. An adapted energy dissipation law-preserving numerical algorithm for a phase-field surfactant model. Comp. Appl. Math. 43, 31 (2024). https://doi.org/10.1007/s40314-023-02537-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02537-x

Keywords

Mathematics Subject Classification

Navigation