Skip to main content
Log in

SVD-based algorithms for fully-connected tensor network decomposition

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The popular fully-connected tensor network (FCTN) decomposition has achieved successful applications in many fields. A standard method to this decomposition is the alternating least squares. However, it often converges slowly and suffers from issues of numerical stability. In this work, we investigate the SVD-based algorithms for FCTN decomposition to tackle the aforementioned deficiencies. On the basis of a result about FCTN-ranks, a deterministic algorithm, namely FCTN-SVD, is first proposed, which can approximate the FCTN decomposition under a fixed accuracy. Then, we present the randomized version of the algorithm. Both synthetic and real data are used to test our algorithms. Numerical results show that they perform much better than the existing methods, and the randomized algorithm can indeed yield acceleration on FCTN-SVD. Moreover, we also apply our algorithms to tensor-on-vector regression and achieve quite decent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Fig. 1
Fig. 2
Fig. 3
Algorithm 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Notes

  1. The two degenerated decompositions are a little different from the regular TT and TR decompositions in form. However, they are essentially the same, and can be converted to each other by using the Matlab functions \(\textsc {squeeze}\left( \cdot \right) \) and \(\textsc {permute}\left( \cdot \right) \).

References

  • Ahmadi-Asl S, Cichocki A, Phan AH, Asante-Mensah MG, Ghazani MM, Tanaka T, Oseledets IV (2020) Randomized algorithms for fast computation of low rank tensor ring model. Mach Learn 2(1):011001

    Google Scholar 

  • Ahmadi-Asl S, Abukhovich S, Asante-Mensah MG, Cichocki A, Phan AH, Tanaka T, Oseledets IV (2021) Randomized algorithms for computation of Tucker decomposition and higher order SVD (HOSVD). IEEE Access 9:28684–28706

    Article  Google Scholar 

  • Al Daas H, Ballard G, Cazeaux P, Hallman E, Miedlar A, Pasha M, Reid TW, Saibaba AK (2023) Randomized algorithms for rounding in the tensor-train format. SIAM J Sci Comput 45(1):74–95

    Article  MathSciNet  Google Scholar 

  • Bader BW, Kolda TG, et al (2021) Tensor Toolbox for MATLAB. Version 3.2.1

  • Bahadori MT, Yu QR, Liu Y (2014) Fast multivariate spatio-temporal analysis via low rank tensor learning. Advances in Neural Information Processing Systems 27

  • Che M, Wei Y (2019) Randomized algorithms for the approximations of Tucker and the tensor train decompositions. Adv Comput Math 45(1):395–428

    Article  MathSciNet  Google Scholar 

  • Che M, Wei Y, Yan H (2020) The computation of low multilinear rank approximations of tensors via power scheme and random projection. SIAM J Matrix Anal Appl 41(2):605–636

    Article  MathSciNet  Google Scholar 

  • Che M, Wei Y, Yan H (2021) Randomized algorithms for the low multilinear rank approximations of tensors. J Comput Appl Math 390:113380

    Article  MathSciNet  Google Scholar 

  • Che M, Wei Y, Yan H (2021) An efficient randomized algorithm for computing the approximate Tucker decomposition. J Sci Comput 88(2):32

    Article  MathSciNet  Google Scholar 

  • Che M, Wei Y, Yan H (2023) Efficient algorithms for Tucker decomposition via approximate matrix multiplication. arXiv preprint arXiv:2303.11612

  • Cichocki A, Mandic DP, De Lathauwer L, Zhou G, Zhao Q, Caiafa C, Phan AH (2015) Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process Mag 32(2):145–163

    Article  Google Scholar 

  • Cichocki A, Lee N, Oseledets IV, Phan AH, Zhao Q, Mandic DP (2016) Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions. Foundations and Trends®in Machine Learning 9(4-5), 249–429

  • De Lathauwer L, De Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21(4):1253–1278

    Article  MathSciNet  Google Scholar 

  • Drineas P, Ipsen IC, Kontopoulou E-M, Magdon-Ismail M (2018) Structural convergence results for approximation of dominant subspaces from block krylov spaces. SIAM J Matrix Anal Appl 39(2):567–586

    Article  MathSciNet  Google Scholar 

  • Gu M (2015) Subspace iteration randomization and singular value problems. SIAM J Sci Comput 37(3):1139–1173

    Article  MathSciNet  Google Scholar 

  • Halko N, Martinsson P-G, Tropp JA (2011) Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev 53(2):217–288

    Article  MathSciNet  Google Scholar 

  • Han Z, Huang T, Zhao X, Zhang H, Liu Y (2023) Multi-dimensional data recovery via feature-based fully-connected tensor network decomposition. IEEE Transactions on Big Data

  • Hitchcock FL (1927) The expression of a tensor or a polyadic as a sum of products. J Math Phys 6(1–4):164–189

    Article  Google Scholar 

  • Huber B, Schneider R, Wolf S (2017) A randomized tensor train singular value decomposition. In: Compressed Sensing and Its Applications, pp. 261–290

  • Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Review 51(3):455–500

    Article  MathSciNet  Google Scholar 

  • Kressner D, Vandereycken B, Voorhaar R (2023) Streaming tensor train approximation. SIAM J Sci Comput 45(5):A2610–A2631

    Article  MathSciNet  Google Scholar 

  • Li H, Zhu Y (2021) Randomized block krylov subspace methods for trace and log-determinant estimators. BIT Numerd Math 61:911–939

    Article  MathSciNet  Google Scholar 

  • Liu Y, Zhao X, Song G, Zheng Y, Ng MK, Huang T (2024) Fully-connected tensor network decomposition for robust tensor completion problem. Inverse Prob Imaging 18(1):208–238

    Article  MathSciNet  Google Scholar 

  • Lyu C, Zhao X, Li B, Zhang H, Huang T (2022) Multi-dimensional image recovery via fully-connected tensor network decomposition under the learnable transforms. J Sci Comput 93(2):49

    Article  MathSciNet  Google Scholar 

  • Martinsson P-G, Tropp JA (2020) Randomized numerical linear algebra: foundations and algorithms. Acta Numerica 29:403–572

    Article  MathSciNet  Google Scholar 

  • Martinsson P-G, Voronin S (2016) A randomized blocked algorithm for efficiently computing rank-revealing factorizations of matrices. SIAM J Sci Comput 38(5):485–507

    Article  MathSciNet  Google Scholar 

  • Mickelin O, Karaman S (2020) On algorithms for and computing with the tensor ring decomposition. Numer Linear Algebra Appl 27(3):2289

    Article  MathSciNet  Google Scholar 

  • Minster R, Saibaba AK, Kilmer ME (2020) Randomized algorithms for low-rank tensor decompositions in the Tucker format. SIAM J Math Data Sci 2(1):189–215

    Article  MathSciNet  Google Scholar 

  • Murray R, Demmel J, Mahoney MW, Erichson NB, Melnichenko M, Malik OA, Grigori L, Luszczek P, Dereziński M, Lopes ME, et al (2023) Randomized numerical linear algebra: A perspective on the field with an eye to software. arXiv preprint arXiv:2302.11474

  • Musco C, Musco C (2015) Randomized block krylov methods for stronger and faster approximate singular value decomposition. Advances in Neural Information Processing Systems 28

  • Oseledets IV (2011) Tensor-train decomposition. SIAM J Sci Comput 33(5):2295–2317

    Article  MathSciNet  Google Scholar 

  • Rabusseau G, Kadri H (2016) Low-rank regression with tensor responses. Advances in Neural Information Processing Systems 29

  • Sidiropoulos ND, De Lathauwer L, Fu X, Huang K, Papalexakis EE, Faloutsos C (2017) Tensor decomposition for signal processing and machine learning. IEEE Trans Signal Process 65(13):3551–3582

    Article  MathSciNet  Google Scholar 

  • Sun Y, Guo Y, Luo C, Tropp JA, Udell M (2020) Low-rank Tucker approximation of a tensor from streaming data. SIAM J Math Data Sci 2(4):1123–1150

    Article  MathSciNet  Google Scholar 

  • Tropp JA, Webber RJ (2023) Randomized algorithms for low-rank matrix approximation: Design, analysis, and applications. arXiv preprint arXiv:2306.12418

  • Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31(3):279–311

    Article  MathSciNet  Google Scholar 

  • Vervliet N, De Lathauwer L (2019) Numerical optimization-based algorithms for data fusion. In: Data Handling in Science and Technology vol. 31, pp. 81–128

  • Woolfe F, Liberty E, Rokhlin V, Tygert M (2008) A fast randomized algorithm for the approximation of matrices. Appl Comput Harmonic Ana 25(3):335–366

    Article  MathSciNet  Google Scholar 

  • Yu W, Gu Y, Li Y (2018) Efficient randomized algorithms for the fixed-precision low-rank matrix approximation. SIAM J Matrix Anal Appl 39(3):1339–1359

    Article  MathSciNet  Google Scholar 

  • Yuan L, Li C, Cao J, Zhao Q (2019) Randomized tensor ring decomposition and its application to large-scale data reconstruction. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2127–2131

  • Zhao Q, Zhou G, Xie S, Zhang L, Cichocki A (2016) Tensor ring decomposition. arXiv preprint arXiv:1606.05535

  • Zheng W, Zhao X, Zheng Y, Pang Z (2021b) Nonlocal patch-based fully connected tensor network decomposition for multispectral image inpainting. IEEE Geosci Remote Sens Lett 19:1–5

    Google Scholar 

  • Zheng Y, Huang T, Zhao X, Zhao Q (2022) Tensor completion via fully-connected tensor network decomposition with regularized factors. J Sci Comput 92(1):8

    Article  MathSciNet  Google Scholar 

  • Zheng W, Zhao X, Zheng Y, Huang T (2024) Provable stochastic algorithm for large-scale fully-connected tensor network decomposition. Journal of Scientific Computing 98(1):16

    Article  MathSciNet  Google Scholar 

  • Zheng Y, Huang T, Zhao X, Zhao Q, Jiang T (2021a) Fully-connected tensor network decomposition and its application to higher-order tensor completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11071–11078

  • Zhou G, Cichocki A, Xie S (2014) Decomposition of big tensors with low multilinear rank. arXiv preprint arXiv:1412.1885

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their detailed comments and helpful suggestions, which helped considerably to improve the quality of the paper.

Funding

This work was supported by the National Natural Science Foundation of China (No. 11671060) and the Natural Science Foundation Project of CQ CSTC (No. cstc2019jcyj-msxmX0267).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design, and read and approved the final manuscript.

Corresponding author

Correspondence to Hanyu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Theorem 3

Proof of Theorem 3

For convenience of expression, we let

$$\begin{aligned} \textrm{FCTN}(\{\mathcal{G}_k\}^{N}_{k=1})= \mathcal{G}_1 {\overline{\times }} \mathcal{G}_2 {\overline{\times }} \cdots {\overline{\times }} \mathcal{G}_N, \end{aligned}$$

where \(\mathcal{G}_k\) with \(k=1,\cdots ,N\) are from Algorithm 4 and \({\overline{\times }}\) denotes some contracted tensor product which now has no explicit definition. Further, considering the procedure of Algorithm 4 gives

$$\begin{aligned} \textrm{FCTN}(\{\mathcal{G}_k\}^{N}_{k=1})&=\left( \mathcal{X} {\overline{\times }} \mathcal{G}_1 {\overline{\times }} \mathcal{G}_2 {\overline{\times }} \cdots {\overline{\times }} \mathcal{G}_{N-1} \right) {\overline{\times }} \mathcal{G}_1 {\overline{\times }} \mathcal{G}_2 {\overline{\times }} \cdots {\overline{\times }} \mathcal{G}_{N-1} \\&=\mathcal{X} {\overline{\times }} \left( \left( \mathcal{G}_1 {\overline{\times }} \mathcal{G}_2 {\overline{\times }} \cdots {\overline{\times }} \mathcal{G}_{N-1} \right) {\overline{\times }} \left( \mathcal{G}_1 {\overline{\times }} \mathcal{G}_2 {\overline{\times }} \cdots {\overline{\times }} \mathcal{G}_{N-1} \right) \right) \\&= P_N(\mathcal{X}). \end{aligned}$$

Note that \(\mathcal{G}_k\) with \(k=1,\cdots ,N\) are reshaped from orthonormal matrices. Hence, \(P_N(\mathcal{X})\) is actually an orthogonal projector. To find the bound between \(\mathcal X\) and \(P_N(\mathcal{X})\), we first present a definition.

Definition 7

(FCTN unfolding) The FCTN unfolding of a 3Nth-order tensor \(\mathcal{Z} \in \mathbb {R}^{I_1 \times I_2 \cdots \times I_{3N}}\) is the matrix \(\widehat{\textbf{Z}}\) of size \(\prod _{j=1}^{N} I_{3j-1} \times \prod _{j=1}^{N} I_{3j-2}I_{3j}\) defined element-wise via

$$\begin{aligned} \widehat{\textbf{Z}}(\overline{i_2\cdots i_{3N-1}}, \overline{i_1i_3 \cdots i_{3N-2}i_{3N}})=\mathcal{Z}(i_1, \cdots , i_{3N}). \end{aligned}$$

Thus,

$$\begin{aligned} {\left\| \mathcal{X} - P_N(\mathcal{X}) \right\| _F^2}&= {\left\| \mathcal{X} \right\| _F^2} - {\left\| P_N(\mathcal{X}) \right\| _F^2} = {\left\| \mathcal{X} \right\| _F^2} - \left\langle {\widehat{\textbf{X}}^{\left( N-1 \right) }} , {\widehat{\textbf{X}}^{\left( N-1 \right) }} \right\rangle \nonumber \\&= {\left\| \mathcal{X} \right\| _F^2} - \left\langle ( (\textbf{Q}^{(N-1)})^T {\textbf{X}^{\left( N-2 \right) }} , ((\textbf{Q}^{(N-1)})^T{\textbf{X}^{\left( N-2 \right) }} \right\rangle \nonumber \\&= {\left\| \mathcal{X} \right\| _F^2} - \left\langle {\textbf{X}^{\left( N-2 \right) }} , \textbf{Q}^{(N-1)}(\textbf{Q}^{(N-1)})^T{\textbf{X}^{\left( N-2 \right) }} \right\rangle , \end{aligned}$$
(A1)

where \(\widehat{\textbf{X}}^{\left( N-1 \right) } \in {\mathbb {R}}^{R_{N-1,N} \times R_{1,N}\cdots R_{N-2,N}I_N}\) is from \(\mathcal{X}^{(N-1)}\), \(\textbf{X}^{\left( N-2 \right) }\) is the matrix in line 8 in Algorithm 4 for \(k=N-1\), and \(\left\langle \cdot \right\rangle \) denotes the classical inner product of matrices.

Since \( \textbf{Q}^{(k)}\) is orthonormal, for the matrix in line 8 in Algorithm 4, we have

$$\begin{aligned} \left\langle {\textbf{X}^{\left( k-1 \right) }} , \textbf{Q}^{(k)}(\textbf{Q}^{(k)})^T{\textbf{X}^{\left( k-1 \right) }} \right\rangle&= \left\langle {\textbf{X}^{\left( k-1 \right) }} , {\textbf{X}^{\left( k-1 \right) }} - \left( \textbf{I} - \textbf{Q}^{(k)}(\textbf{Q}^{(k)})^T \right) {\textbf{X}^{\left( k-1 \right) }} \right\rangle \\&= {\left\| {\textbf{X}^{\left( k-1 \right) }} \right\| _F^2} - {\left\| \left( \textbf{I} - \textbf{Q}^{(k)}(\textbf{Q}^{(k)})^T \right) {\textbf{X}^{\left( k-1 \right) }} \right\| _F^2} , \end{aligned}$$

where \(\textbf{X}^{(0)} = \textbf{X}_{<1>}\). This result together with the fact

$$\begin{aligned} {\left\| {\textbf{X}^{\left( k-1 \right) }} \right\| _F^2} = {\left\| {\widehat{\textbf{X}}^{\left( k-1 \right) }} \right\| _F^2} \end{aligned}$$

leads to

$$\begin{aligned} \left\langle {\textbf{X}^{\left( k-1 \right) }} , \textbf{Q}^{(k)}(\textbf{Q}^{(k)})^T{\textbf{X}^{\left( k-1 \right) }} \right\rangle&= {\left\| {\widehat{\textbf{X}}^{\left( k-1 \right) }} \right\| _F^2} - {\left\| \left( \textbf{I} - \textbf{Q}^{(k)}(\textbf{Q}^{(k)})^T \right) {\textbf{X}^{\left( k-1 \right) }} \right\| _F^2} \\&= \left\langle {\textbf{X}^{\left( k-2 \right) }} , \textbf{Q}^{(k-1)}(\textbf{Q}^{(k-1)})^T{\textbf{X}^{\left( k-2 \right) }} \right\rangle -\\&\quad \ {\left\| \left( \textbf{I} - \textbf{Q}^{(k)}(\textbf{Q}^{(k)})^T \right) {\textbf{X}^{\left( k-1 \right) }} \right\| _F^2}. \end{aligned}$$

Thus, combining the above recursive formula with (A1) implies

$$\begin{aligned} {\left\| \mathcal{X} - P_N(\mathcal{X}) \right\| _F^2}&= {\left\| \mathcal{X} \right\| _F^2} - {\left\| {\textbf{X}_{ < 1 > }} \right\| _F^2} + \sum \limits _{k = 1}^{N - 1} {{\left\| \left( \textbf{I} - \textbf{Q}^{(k)}(\textbf{Q}^{(k)})^T \right) {\textbf{X}^{\left( {k-1} \right) }} \right\| _F^2}} \\&= \sum \limits _{k = 1}^{N - 1} {{\left\| \left( \textbf{I} - \textbf{Q}^{(k)}(\textbf{Q}^{(k)})^T \right) {\textbf{X}^{\left( {k-1} \right) }} \right\| _F^2}}. \end{aligned}$$

To continue, we need a lemma as follows.

Lemma 1

(Minster et al. (2020), Theorem 2.4) Let \(\textbf{A} \in {\mathbb {R}}^{m\times n}\), and choose a target rank \(r\ge 2\) and an oversampling parameter \(p \ge 2\), where \(r+p \le \min \left\{ {m,n} \right\} \). Draw a standard Gaussian matrix \(\mathbf{\Omega } \in {\mathbb {R}}^{n\times {(r+p)}}\) and construct \(\textbf{Y}=\textbf{A}{} \mathbf{\Omega }\). Assume \(\textbf{Q}_Y\) and \(\textbf{U}_{\textbf{Q}_Y^T\textbf{Y}}\) are the orthonormal basis matrices of \({{\,\textrm{range}\,}}(\textbf{Y})\) and \({{\,\textrm{range}\,}}(\textbf{Q}_Y^T\textbf{Y})\), respectively. Set \(\textbf{Q}=\textbf{Q}_Y\textbf{U}_{\textbf{Q}_Y^T\textbf{Y}}(:,1:r)\). Then the following expected approximation error holds:

$$\begin{aligned} {\textbf{E}}_{\mathbf {\Omega }}\left\| {\textbf{A} - \textbf{Q}{\textbf{Q}^T}{} \textbf{A}} \right\| _F^2 \le {\left( {1 + \frac{r}{{p - 1}}} \right) }{\left( {\sum \limits _{l > r} {{\sigma ^2 _l}(\mathbf{{A}})} } \right) }, \end{aligned}$$

where \(\sigma _{l }(A)\) is the lth singular value of \(\textbf{A}\).

Hence,

$$\begin{aligned} {\textbf{E}}_{{\mathbf {\Omega }^{(k)}}}{{\left\| \left( \textbf{I} - \textbf{Q}^{(k)}(\textbf{Q}^{(k)})^T \right) {\textbf{X}^{\left( {k-1} \right) }} \right\| _F^2}} \le {\left( {1 + \frac{r^{N-k}}{{R_0 - 1}}} \right) }\sum \limits _{l > r^{N-k}} {\sigma ^2 _l\left( {{\textbf{X}^{\left( {k-1} \right) }} } \right) }. \end{aligned}$$

As a result,

$$\begin{aligned} {\textbf{E}}_{\{{\mathbf {\Omega }^{(k)}}\}^{N-1}_{k=1}}{\left\| \mathcal{X} - \textrm{FCTN}(\{\mathcal{G}_k\}^{N}_{k=1}) \right\| _F^2} \le \sum \limits _{k = 1}^{N - 1} {\left( {1 + \frac{{{r^{N - k}}}}{{R_0 - 1}}} \right) \sum \limits _{l > {r^{N - k}}} {{\sigma ^2 _l}\left( {{\mathbf{{X}}^{\left( {k - 1} \right) }}} \right) } } . \end{aligned}$$

Note that, by the procedure of Algorithm 4 and Theorem 1,

$$\begin{aligned} \sum \limits _{l> {r^{N - k}}}{{\sigma ^2 _l}\left( {{\mathbf{{X}}^{\left( {k - 1} \right) }}} \right) }&\le \sum \limits _{l> {r^{N - k}}}{{\sigma ^2 _l}\left( {{\mathbf{{X}}_{<k>}}} \right) } = \mathop {\min }\limits _{{{\,\textrm{rank}\,}}(\textbf{Y}_{<k>})\le {r^{N - k}}} \left\| {{\mathbf{{X}}_{<k>}}}-\textbf{Y}_{<k>}\right\| _F^2\\&\le \mathop {\min }\limits _{\mathrm{FCTN-ranks}(\mathcal{Y})\le \textbf{r}} \left\| {{\mathcal{{X}}}}-\mathcal Y\right\| _F^2, \end{aligned}$$

where \(\textbf{r}=[r,\cdots ,r]\) are the FCTN-ranks of \(\mathcal X\). Hence, the desired result holds.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, H. SVD-based algorithms for fully-connected tensor network decomposition. Comp. Appl. Math. 43, 265 (2024). https://doi.org/10.1007/s40314-024-02772-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02772-w

Keywords

Mathematics Subject Classification

Navigation