Skip to main content

Oscillation of second-order noncanonical neutral differential equations with distributed deviating arguments

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This study is devoted to the oscillatory behaviour of all solutions to a class of second-order noncanonical differential equations of neutral type with distributed deviating arguments. Some new sufficient conditions for all solutions of the equation considered here to be oscillatory are presented. Examples showing the applicability of the main results are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal RP, Bohner M, Li T, Zhang C (2014) Oscillation of second-order differential equations with a sublinear neutral term. Carpathian J Math 30:1–6

    Article  MathSciNet  MATH  Google Scholar 

  • Agarwal RP, Zhang C, Li T (2016) Some remarks on oscillation of second order neutral differential equations. Appl Math Comput 274:178–181

    MathSciNet  MATH  Google Scholar 

  • Bohner M, Grace SR, Jadlovská I (2017) Oscillation criteria for second-order neutral delay differential equations. Electron J Qual Theory Differ Equ 2017(60):1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Bohner M, Sudha B, Tangavelu K, Thandapani E (2019) Oscillation criteria for second-order differential equations with superlinear neutral term. Nonlinear Stud 26:425–434

    MathSciNet  MATH  Google Scholar 

  • Bohner M, Grace SR, Jadlovská I (2020) Sharp oscillation criteria for second-order neutral delay differential equations. Math Methods Appl Sci 43:10041–10053

    Article  MathSciNet  MATH  Google Scholar 

  • Brayton RK, Willoughby RA (1967) On the numerical integration of a symmetric system of difference-differential equations of neutral type. J Math Anal Appl 18:182–189

    Article  MathSciNet  MATH  Google Scholar 

  • Candan T (2011) Oscillation of second-order nonlinear neutral dynamic equations on time scales with distributed deviating arguments. Comput Math Appl 62:4118–4125

    Article  MathSciNet  MATH  Google Scholar 

  • Candan T (2015) Oscillatory behavior of second order nonlinear neutral differential equations with distributed deviating arguments. Appl Math Comput 262:199–203

    MathSciNet  MATH  Google Scholar 

  • Dong JG (2010) Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments. Comput Math Appl 59:3710–3717

    Article  MathSciNet  MATH  Google Scholar 

  • Grace SR, Graef JR (2018) Oscillatory behavior of second order nonlinear differential equations with a sublinear neutral term. Math Model Anal 23:217–226

    Article  MathSciNet  MATH  Google Scholar 

  • Grace SR, Akın E, Dikmen CM (2014) On the oscillation of second order nonlinear neutral dynamic equations with distributed deviating arguments on time-scales. Dyn Syst Appl 23:735–748

    MathSciNet  MATH  Google Scholar 

  • Grace SR, Graef JR, Tunç E (2017) Oscillatory behavior of second order damped neutral differential equations with distributed deviating arguments. Miskolc Math Notes 18:759–769

    Article  MathSciNet  MATH  Google Scholar 

  • Grace SR, Dz̆urina J, Jadlovská I, Li T (2018) An improved approach for studying oscillation of second-order neutral delay differential equations. J Inequalities Appl 193:1–13

    MathSciNet  MATH  Google Scholar 

  • Grace SR, Graef JR, Li T, Tunç E (2021) Oscillatory behavior of second-order nonlinear differential equations with mixed neutral terms. Tatra Mt Math Publ 79:119–134

    MathSciNet  MATH  Google Scholar 

  • Grace SR, Graef JR, Tunç E (2022) Oscillation of second-order nonlinear noncanonical dynamic equations with deviating arguments. Acta Math Univ Comenianae 91:113–120

    MathSciNet  MATH  Google Scholar 

  • Grace SR, Graef JR, Li T, Tunç E (2023) Oscillatory behavior of second-order nonlinear noncanonical neutral differential equations. Mathematica 15:259–271

    MathSciNet  MATH  Google Scholar 

  • Graef JR, Grace SR, Tunç E (2021) Oscillatory behavior of second-order neutral differential equations with damping and distributed deviating arguments. Panam Math J 31:41–54

    MATH  Google Scholar 

  • Gui G, Xu Z (2007) Oscillation criteria for second-order neutral differential equations with distributed deviating arguments. Electron J Differ Equ 2007(10):1–11

    MathSciNet  MATH  Google Scholar 

  • Györi I, Ladas G (1991) Oscillation theory of delay differential equations with applications. Clarendon Press, Oxford

    Book  MATH  Google Scholar 

  • Hale JK (1977) Theory of functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • Jadlovská I (2021) New criteria for sharp oscillation of second-order neutral delay differential equations. Mathematics 9:1–23

    MATH  Google Scholar 

  • Koplatadze R, Kvinikadze G, Stavroulakis IP (1999) Properties A and B of nth order linear differential equations with deviating argument. Georgian Math J 6:553–566

    Article  MathSciNet  MATH  Google Scholar 

  • Li T, Rogovchenko YV (2015) Oscillation of second-order neutral differential equations. Math Nachr 288:1150–1162

    Article  MathSciNet  MATH  Google Scholar 

  • Li T, Rogovchenko YV (2017) Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations. Monatsh Math 184:489–500

    Article  MathSciNet  MATH  Google Scholar 

  • Li T, Thandapani E (2011) Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments. J Nonlinear Sci Appl 4:180–192

    Article  MathSciNet  MATH  Google Scholar 

  • Li T, Rogovchenko YV, Zhang C (2013a) Oscillation of second-order neutral differential equations. Funkcial Ekvac 56:111–120

    Article  MathSciNet  MATH  Google Scholar 

  • Li T, Thandapani E, Graef JR, Tunç E (2013b) Oscillation of second-order Emden–Fowler neutral differential equations. Nonlinear Stud 20:1–8

    MathSciNet  MATH  Google Scholar 

  • Prabaharan N, Dharuman CP, Graef JR, Thandapani E (2019) New oscillation criteria for second order quasi-linear differential equations with sub-linear neutral term. Appl Math E-Notes 19:563–574

    MathSciNet  MATH  Google Scholar 

  • Qi Y, Yu J (2015) Oscillation of second order nonlinear mixed neutral differential equations with distributed deviating arguments. Bull Malays Math Sci Soc 38:543–560

    Article  MathSciNet  MATH  Google Scholar 

  • Saker SH, Agarwal RP, O’Regan D (2007) Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. Appl Anal 86:1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Sethi AK, Tripathy AK (2021) On oscillatory second order differential equations with variable delays. Palestine J Math 10:487–501

    MathSciNet  MATH  Google Scholar 

  • Sui Y, Han Z (2018) Oscillation of second order neutral dynamic equations with deviating arguments on time scales. Adv Differ Equ 2018(337):1–10

    MathSciNet  MATH  Google Scholar 

  • Tamilvanan S, Thandapani E, Dz̆urina J (2017) Oscillation of second order nonlinear differential equation with sub-linear neutral term. Differ Equ Appl 9:29–35

    MathSciNet  MATH  Google Scholar 

  • Thandapani E, Piramanantham V (2010) Oscillation criteria of second order neutral delay dynamic equations with distributed deviating arguments. Electron J Qual Theory Differ Equ 2010(61):1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Tripathy AK, Santra SS (2021) Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients. Math Bohem 146:185–197

    Article  MathSciNet  MATH  Google Scholar 

  • Tunç E, Graef JR (2014) Oscillation results for second order neutral dynamic equations with distributed deviating arguments. Dyn Syst Appl 23:289–303

    MathSciNet  MATH  Google Scholar 

  • Wang P (2004) Oscillation criteria for second-order neutral equations with distributed deviating arguments. Comput Math Appl 47:1935–1946

    Article  MathSciNet  MATH  Google Scholar 

  • Xu R, Meng F (2006) Some new oscillation criteria for second order quasi-linear neutral delay differential equations. Appl Math Comput 182:797–803

    MathSciNet  MATH  Google Scholar 

  • Xu Z, Weng P (2007) Oscillation of second order neutral equations with distributed deviating argument. J Comput Appl Math 202:460–477

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Q, Xu Z, Long P (2016a) Oscillation of second order neutral dynamic equations with distributed delay. Electron J Qual Theory Differ Equ 2016(42):1–13

    MathSciNet  MATH  Google Scholar 

  • Yang Q, Jia B, Xu Z (2016b) Nonlinear oscillation of second-order neutral dynamic equations with distributed delay. Math Methods Appl Sci 39:202–213

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao J, Meng F (2008) Oscillation criteria for second-order neutral equations with distributed deviating argument. Appl Math Comput 206:485–493

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orhan Özdemir.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunç, E., Baş, K., Özdemir, O. et al. Oscillation of second-order noncanonical neutral differential equations with distributed deviating arguments. Comp. Appl. Math. 44, 97 (2025). https://doi.org/10.1007/s40314-024-03065-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-03065-y

Keywords

Mathematics Subject Classification