Skip to main content
Log in

Ground state normalized solutions to Schrödinger equation with inverse-power potential and HLS lower critical Hartree-type nonlinearity

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the following Schrödinger equation with inverse-power potential and HLS lower critical Hartree-type nonlinearity

$$\begin{aligned} {\left\{ \begin{array}{ll} -{\Delta }u-\frac{u}{|x|^s}-\mu |u|^{q-2}u-(I_\alpha *h|u|^{2_\alpha })h|u|^{2_\alpha -2}u=\lambda u\ \ \text{ in }\ {\mathbb {R}}^N, \\ \int _{{\mathbb {R}}^N} u^2 dx = c, \end{array}\right. } \end{aligned}$$

where \(\alpha \in (0,N)\), \(N \ge 3\), \(s\in (0,2)\), \(\mu , c>0\), \(2<q<2+\frac{4}{N}\), \(\lambda \in {\mathbb {R}}\) is an unknown Lagrange multiplier and \(h:{\mathbb {R}}^N\rightarrow (0,\infty )\) is a continuous function. Under reasonable assumptions on h(x), we investigate the existence and asymptotic behavior of ground state normalized solutions to the above problem. Compared with the existing references, we extend the results obtained by Li et al. (Comput Math Appl 79:303–316, 2020) to the HLS lower critical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors declare that data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  • Cao L, Feng B, Mo Y (2024) Orbital stability of standing waves for the Sobolev critical Schrödinger equation with inverse-power potential. Qual Theory Dyn Syst 23:147

    Article  Google Scholar 

  • Cassani D, Van Schaftingen J, Zhang J (2019) Groundstates for Choquard type equations with Hardy–Littlewood–Sobolev lower critical exponent. Proc R Soc Edinb Sect A 150:1377–1400

    Article  MathSciNet  Google Scholar 

  • Chen S, Tang X (2020) Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity. RACSAM 114:14

    Article  MathSciNet  Google Scholar 

  • Elgart A, Schlein B (2007) Mean field dynamics of Boson Stars. Commun Pure Appl Math 60:500–545

    Article  MathSciNet  Google Scholar 

  • Fröhlich H (1937) Theory of electrical breakdown in ionic crystals. Proc R Soc Lond Ser A 160:230–241

    Article  Google Scholar 

  • Li X, Ma S (2020) Choquard equations with critical nonlinearities. Commun Contemp Math 22:1950023

    Article  MathSciNet  Google Scholar 

  • Li X, Zhao J (2020) Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential. Comput Math Appl 79:303–316

    Article  MathSciNet  Google Scholar 

  • Li Y, Li G, Tang C (2021) Radial ground state solutions for Choquard equations with Hardy–Littlewood–Sobolev lower critical growth. Complex Var Ellipt Equ 67:2747–2758

    Article  MathSciNet  Google Scholar 

  • Li X, Bao J, Tang W (2023) Normalized solutions to lower critical Choquard equations with a local perturbation. Discrete Contin Dyn Syst Ser B 28:3216–3232

    Article  MathSciNet  Google Scholar 

  • Lieb E (1983) Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann Math 118:349–374

    Article  MathSciNet  Google Scholar 

  • Lieb E, Loss M (2001) Analysis, vol 14, 2nd edn. Graduate Studies in Mathematics. American Mathematical Society, Providence

  • Luo H (2020) Nontrivial solutions for nonlinear Schrödinger–Choquard equations with critical exponents. Appl Math Lett 107:106422

    Article  MathSciNet  Google Scholar 

  • Meng Y (2022) Existence of stable standing waves for the nonlinear Schrödinger equation with attractive inverse-power potentials. AIMS Math 7:5957–5970

    Article  MathSciNet  Google Scholar 

  • Messiah A (1961) Quantum mechanics. North Holland, Amsterdam

    Google Scholar 

  • Moroz V, Van Schaftingen J (2013) Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal 265:153–184

    Article  MathSciNet  Google Scholar 

  • Moroz V, Van Schaftingen J (2015) Ground states of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent. Commun Contemp Math 17:1550005

    Article  MathSciNet  Google Scholar 

  • Nirenberg L (1959) On elliptic partial differential equations. Ann Sc Norm Super Pisa Cl Sci (3) 13:115–162

    MathSciNet  Google Scholar 

  • Pekar S (1954) Untersuchungen Muber die Elektronentheorie der Kristalle. Akademie, Berlin

    Book  Google Scholar 

  • Penrose R (1996) On gravity’s role in quantum state reduction. Gen Relativ Gravit 28:581–600

    Article  MathSciNet  Google Scholar 

  • Penrose R (1998) Quantum computation, entanglement and state reduction. Philos Trans R Soc Lond Ser A 356:1927–1939

    Article  MathSciNet  Google Scholar 

  • Series G (1957) Spectrum of atomic hydrogen. Oxford University Press, Oxford

    Google Scholar 

  • Tang X, Wei J, Chen S (2020) Nehari-type ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation. Math Methods Appl Sci 43:6627–6638

    Article  MathSciNet  Google Scholar 

  • Van Schaftingen J, Xia J (2018) Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent. J Math Anal Appl 464:1184–1202

    Article  MathSciNet  Google Scholar 

  • Wang Y (2021) Existence of stable standing waves for the nonlinear Schrödinger equation with inverse-power potential and combined power-type and Choquard-type nonlinearities. AIMS Math 6:5837–5850

    Article  MathSciNet  Google Scholar 

  • Willem M (1996) Minimax theorems. Birkhäuser, Boston

    Book  Google Scholar 

  • Willem M (2013) Functional analysis: fundamentals and applications, cornerstones, vol XIV. Birkhauser, Basel

  • Yao S, Chen H, Rădulescu VD, Sun J (2022) Normalized solutions for lower critical Choquard equations with critical Sobolev perturbation. SIAM J Math Anal 54:3696–3723

    Article  MathSciNet  Google Scholar 

  • Ye W, Shen Z, Yang M (2022) Normalized solutions for a critical Hartree equation with perturbation. J Geom Anal 32:1–44

    Article  MathSciNet  Google Scholar 

  • Zhou S, Liu Z, Zhang J (2022) Groundstates for Choquard type equations with weighted potentials and Hardy–Littlewood–Sobolev lower critical exponent. Adv Nonlinear Anal 11:141–158

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziheng Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, Z. & Guo, R. Ground state normalized solutions to Schrödinger equation with inverse-power potential and HLS lower critical Hartree-type nonlinearity. Comp. Appl. Math. 44, 166 (2025). https://doi.org/10.1007/s40314-025-03131-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-025-03131-z

Keywords

Mathematics Subject Classification