Skip to main content
Log in

Teaching Algebraic Model Construction: A Tutoring System, Lessons Learned and an Evaluation

  • ARTICLE
  • Published:
International Journal of Artificial Intelligence in Education Aims and scope Submit manuscript

Abstract

An algebraic model uses a set of algebra equations to precisely describe a situation. Constructing such models is a fundamental skill required by US standards for both math and science. It is usually taught with algebra word problems. However, many students still lack the skill, even after taking several algebra courses in high school and college. We are developing a short, intensive course in algebraic model construction. The course combines human teaching with a tutoring system. This paper describes the lessons learned during the iterative development process. Starting from an existing theory of model construction, we gradually acquired a completely different view of the skills required as we modified the tutoring system and the instruction. We close by describing encouraging results from a quasi-experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anthony, L., Corbett, A. T., Wagner, A. Z., Stevens, S. M., & Koedinger, K. R. (2004). Student question-asking patterns in an intelligent algebra tutor. In J. C. Lester, R. M. Vicari, & F. Praguacu (Eds.), Intelligent tutoring systems: 7th international conference, ITS 2004 (pp. 455–467). Berlin: Springer-Verlag.

    Google Scholar 

  • Arnau, D., Arevalillo-Herraez, M., Puig, L., & Gonzalez-Calero, J. A. (2013). Fundamentals fo the design and the operation of an intelligent tutoring system for the learning of the arithmetical and algebraic way of solving word problems. Computer and Education, 63, 119–130.

    Google Scholar 

  • Arroyo, I. (2000). AnimalWatch: An arithmetic ITS for elementary and middle school students. Paper presented at the Workshop at ITS 2000.

  • Avouris, N., Margaritis, M., Komis, V., Saez, A., & Melendez, R. (2003). ModellingSpace: Interaction design and architecture of a collaborative modelling environment. Paper presented at the Sixth International Conference on Computer Based Learning in Sciences (CBLIS), Nicosia, Cyprus.

  • Baker, R. S. J. D., Corbett, A., Roll, I., & Koedinger, K. R. (2008). Developing a generalizable detector of when students game the system. User Modeling and User-Adapted Interaction, 18(3), 287–314.

    Google Scholar 

  • Beal, C., Arroyo, I., Cohen, P. R., & Woolf, B. P. (2010). Evaluation of AnimalWatch: An intelligent tutoring system for arithmetic and fractions. Journal of Interactive Online Learning, 9(1), 64–77.

    Google Scholar 

  • Beck, J., Woolf, B. P., & Beal, C. (2000). ADVISOR: A machine learning architecture for intelligent tutor construction. In Proceedings of the Seventeenth National Conference on Artificial Intelligence (pp. 552–557). Menlo Park, CA: AAAI Press.

  • Beek, W., Bredeweg, B., & Lautour, S. (2011). Context-dependent help for the DynaLearn modelling and simulation workbench. In G. Biswas (Ed.), Artificial intelligence in education (pp. 4200–4422). Berlin: Springer-Verlag.

    Google Scholar 

  • Biswas, G., Leelawong, K., Schwartz, D. L., & Vye, N. J. (2005). Learning by teaching: A new agent paradigm for educational software. Applied Artificial Intelligence, 19, 263–392.

    Google Scholar 

  • Blessing, S. B., & Ross, B. H. (1996). Content effects in problem categorization and problem solving. Journal of Experimental Psychology: Learning, Memory and Cognition, 22(3), 792–810.

    Google Scholar 

  • Bravo, C., van Joolingen, W. R., & de Jong, T. (2009). Using co-lab to build system dynamics models: Students' actions and on-line tutorial advice. Computer and Education, 53, 243–251.

    Google Scholar 

  • Bridewell, W., Sanchez, J. N., Langley, P., & Billman, D. (2006). An interactive environment for the modeling and discovery of scientific knowledge. International Journal of Human-Computer Studies, 64, 1099–1114.

    Google Scholar 

  • Carnegie Learning. (2020). Cognitive tutors. Retrieved from http://www.carnegielearning.com/.

  • Chan, T.-W., & Chou, C.-Y. (1997). Exploring the design of computer supports for reciprocal tutoring. International Journal of Artificial Intelligence and Education, 8, 1–29.

    Google Scholar 

  • Chang, K.-E., Sung, Y.-T., & Lin, S.-F. (2006). Computer-assisted learning for mathematical problem solving. Computers & Education, 46, 140–151.

    Google Scholar 

  • Chase, C. C., Chin, D. B., Oppenzzo, M., & Schwartz, D. L. (2009). Teachable agents and the Protégé effect: Increasing the effort towards learning. Journal of Science Education and Technology, 18(4), 334–352.

    Google Scholar 

  • Chi, M., & VanLehn, K. (2008). Eliminating the gap between the high and low students through meta-cognitive strategy instruction. In B. P. Woolf, E. Aimeur, R. Nkambou, & S. P. Lajoie (Eds.), Intelligent tutoring systems: 9th International Conference: ITS2008 (pp. 603–613). Berlin: Springer.

    Google Scholar 

  • Chi, M., & VanLehn, K. (2010). Meta-cognitive strategy instruction in intelligent tutoring systems: How, when and why. Journal of Educational Technology and Society, 13(1), 25–39.

    Google Scholar 

  • Connelly, J., & Katz, S. (2009). Toward more robust learning of physics via reflective dialogue extensions. In G. Siemens & C. Fulford (Eds.), Proceedings of the World Conference on Educational Multimedia, Hypermedia and Telecommunications 2009 (pp. 1946–1951). Chesapeake, VA: AACE.

    Google Scholar 

  • Cooper, G., & Sweller, J. (1987). Effects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 79(4), 347–362.

    Google Scholar 

  • Corbett, A., Wagner, A. Z., Chao, C.-Y., Lesgold, S., Stevens, S. M., & Ulrich, H. (2005). Student questions in a classroom evaluation of the ALPS learning environment. In C.-K. Looi & G. McCalla (Eds.), Artificial intelligence in education (pp. 780–782). Amsterdam: IOS Press.

    Google Scholar 

  • Corbett, A., Wagner, A. Z., Lesgold, S., Ulrich, H., & Stevens, S. M. (2006). The impact of learning of generating vs. selecting descriptions in analyzing algebra example solutions. In S. A. Barab, K. E. Hay, & D. T. Hickey (Eds.), The 7th International Conference of the Learning Sciences (pp. 99–105). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Corbett, A., Wagner, A. Z., & Raspat, J. (2003). The impact of analysing example solutions on problem solving in a pre-algebra tutor. In U. Hoppe, F. Verdejo, & H. Kay (Eds.), Artificial intelligence in education: Proceedings of AIED 2003: The 11th international conference on AI in education (pp. 133–140). Washington DC: IOS Press.

    Google Scholar 

  • Cummins, D. D., Kintsch, W., Reusser, K., & Weimer, R. (1988). The role of understanding in solving word problems. Cognitive Psychology, 20, 405–438.

    Google Scholar 

  • Darocyz, G., Wolska, M., Meurers, W. D., & Nuerk, H.-C. (2015). Word problems: A review of linguistics and numerical factors contributing to their difficulty. Frontiers in Psychology, 6, 348–362.

    Google Scholar 

  • de Jong, T., Martin, E., Zamarro, J.-M., Esquembre, F., Swaak, J., & van Joolingen, W. R. (1999). The integration of computer simulation and learning support: An example from the physics domain of collisions. Journal of Research in Science Teaching, 36(5), 597–615.

    Google Scholar 

  • Derry, S. J., & Hawkes, L. W. (1993). Local cognitive modeling of problem-solving behavior: An application of fuzzy theory. In S. P. Lajoie & S. J. Derry (Eds.), Computers as cognitive tools (pp. 107–140). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Forbus, K. D., Carney, K., Sherin, B. L., & Ureel Il, L. C. (2005). VModel: A visual qualitative modeling environment for middle-school students. AI Magazine, 26(3), 63–72.

    Google Scholar 

  • Fuchs, L. S., Fuchs, D., Finelli, R., Courey, S. J., & Hamlett, C. L. (2004). Expanding schema-based transfer instruction to help third graderes solve real-life mathematical problems. American Education Research Journal, 41(2), 419–445.

    Google Scholar 

  • Fuchs, L. S., Fuchs, D., Prentice, K., Burch, M., Hamlett, C. L., Owen, R., Hosp, M., & Jancek, D. (2003). Explicitly teaching for transfer: Effects on third-grade students' mathematical problem solving. Journal of Educational Psychology, 95(2), 293–305.

    Google Scholar 

  • Fuchs, L. S., Fuchs, D., Prentice, K., Hamlett, C. L., Finelli, R., & Courey, S. J. (2004). Enhancing mathematical problem solving among third-grade students with schema-based instruction. Journal of Educational Psychology, 96(4), 635–647.

    Google Scholar 

  • Fuchs, L. S., Fuchs, D., Seethaler, P. M., & Barnes, M. A. (2019). Addressing the role of working memory in mathematical word-problem solving when designing intervention for struggling learners. ZDM Mathematics Education, 52, 87–96.

    Google Scholar 

  • Fuchs, L. S., Powell, S. R., Seethaler, P. M., Cirino, P. t., Fletcher, J. M., Fuchs, D., et al. (2009). Remediating number combinations and word problem deficits among students with mathematics difficulties: A randomized control trial. Journal of Educational Psychology, 101(3), 561–576.

    Google Scholar 

  • Fuchs, L. S., Zumeta, R. O., Schumacher, R. F., Powell, S. R., Seethaler, P. M., Hamlett, C. L., & Fuchs, D. (2010). The effects of schema-broadening instruction on second grader's word-problem performance and their ability to represent word problems with algebric equations: A randomized control study. The Elementary School Journal, 110(4), 440–463.

    Google Scholar 

  • Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Desiging instructional examples to reduce intrinsic cognitive load: Molar versus modular presentation of solution procedures. Instructional Science, 32, 33–58.

    Google Scholar 

  • Gerjets, P., Scheiter, K., & Catrambone, R. (2006). Can learning from molar and modular worked examples be enhanced by providing instructional explanations and prompting self-explanations? Learning and Instruction, 16, 104–121.

    Google Scholar 

  • Gould, L., & Finzer, W. (1982). A study of TRIP: A computer system for animating time-rate-distance problems. International Journal of Man-Machine Studies, 17, 109–126.

    Google Scholar 

  • Heffernan, N. T. (2003). Web-based evaluations showing both cognitive and moitivational benefits of the Ms. Lindquist tutor. In Proceedings of the 11th International Conference on Artificial Intelligence in Education. Berlin: Springer-Verlag.

  • Heffernan, N. T., & Croteau, E. A. (2004). Web-based evaluations showing differential learning for tutorial strategies employed by Ms. Lindquist tutor. In J. C. Lester, R. M. Vicari, & F. Parguaca (Eds.), Intelligent tutoring systems: 7th international conference, ITS 2004 (pp. 491–500). Berlin: Springer-Verlag.

    Google Scholar 

  • Heffernan, N. T., & Koedinger, K. R. (1997). The composition effect in symbolizing: The role of symbol production vs. text comprehension. In M. G. Shafto & P. Langley (Eds.), Proceedings of the Ninetheenth Annual Meeting of the Cognitive Science Society (pp. 307–312). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Heffernan, N. T., Koedinger, K. R., & Razzaq, L. (2008). Expanding the model-tracing architecture: A 3rd generation intelligent tutor for algebra symbolization. International Journal of Artificial Intelligence in Education, 18, 153–178.

    Google Scholar 

  • Hinsley, D. A., Hayes, J. R., & Simon, H. A. (1977). From words to equations: Meaning and representation in algebra word problems. In P. Carpenter & M. A. Just (Eds.), Cognitive processes in comprehension. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hoffer, T. B., Venkataram, L., Hedberg, E. C., & Shagle, S. (2007). Final report on the National Survey of algebra teachers for the National Math Panel. Retrieved from Chicago, IL.

  • Hutchinson, N. L. (1993). Effects of cognitive strategy instruction on algebra problem solving of adolescents with learning disabilities. Learning Disability Quarterly, 16, 34–63.

    Google Scholar 

  • Jitendra, A. K., Griffin, C. C., Haria, P., Leh, J., Adams, A., & Kaduvettoor, A. (2007). A comparison of single and multiple strategy instruction on third-grade students' mathematical problem solving. Journal of Educational Psychology, 99(1), 115–127.

    Google Scholar 

  • Jitendra, A. K., Harwell, M. R., Dupuis, D. N., Karl, S. R., Lein, A. E., Simonson, G., & Slater, S. C. (2015). Effects of a research-based intervention to improve seventh-grade students' proportional problem solving: A cluster randomized trial. Journal of Educational Psychology, 107(4), 1019–1034.

    Google Scholar 

  • Jitendra, A. K., Star, J. R., Dupuis, D. N., & Rodiguez, M. C. (2013). Effectiveness of schema-based instruction for improving seventh-grades students' proportional reasoning: A randomized experiment. Journal of Research on Educational Effectiveness, 6(2), 114–136.

    Google Scholar 

  • Jitendra, A. K., Star, J. R., Rodriguez, M., Lindell, M., & Someki, F. (2011). Improving students' proportional thinking using schema-based instruction. Learning and Instruction, 21, 731–745.

    Google Scholar 

  • Jitendra, A. K., Star, J. R., Starosta, K., Leh, J., Sood, S., Caskie, G., et al. (2009). Improving seventh grade students' learning of ratio and proportion: The role of schema-based instruction. Contemporary Educational Psychology, 34, 250–264.

    Google Scholar 

  • Katz, S., Allbritton, D., & Connelly, J. (2003). Going beyond the problem given: How human tutors use post-solution discussions to support transfer. International Journal of Artificial Intelligence in Education, 13, 79–116.

    Google Scholar 

  • Katz, S., Connelly, J., & Wilson, C. (2007). Out of the lab and into the classroom: An evaluation of reflective dialogue in Andes. In R. Luckin & K. R. Koedinger (Eds.), Proceedings of AI in Education, 2007 (pp. 425–432). Amsterdam, Netherlands: IOS Press.

    Google Scholar 

  • Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92, 109–129.

    Google Scholar 

  • Koedinger, K. R., Alibali, M. W., & Nathan, M. J. (2008). Trade-offs between grounded and abstract representations: Evidence from algebra problem solving. Cognitive Science, 32, 366–397.

    Google Scholar 

  • Koedinger, K. R., & Anderson, J. R. (1998). Illustrating principled design: The early evolution of a cognitive tutor for algebra symbolization. Interactive Learning Environments, 5, 161–180.

    Google Scholar 

  • Koedinger, K. R., Corbett, A., & Perfetti, C. (2012). The knowledge-Learning-instruction (KLI) framework: Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757–798.

    Google Scholar 

  • Leelawong, K., & Biswas, G. (2008). Designing learning by teaching agents: The Betty's brain system. International Journal of Artificial Intelligence and Education, 18(3), 181–208.

    Google Scholar 

  • Löhner, S., Van Joolingen, W. R., & Savelsbergh, E. R. (2003). The effect of external representation on constructing computer models of complex phenomena. Instructional Science, 31, 395–418.

    Google Scholar 

  • Löhner, S., Van Joolingen, W. R., Savelsbergh, E. R., & Van Hout-Wolters, B. (2005). Students' reasoning during modeling in an inquiry learning environment. Computers in Human Behavior, 21, 441–461.

    Google Scholar 

  • Looi, C.-K., & Tan, B. T. (1996). WORDMATH: A computer-based environment for learning word problem solving. Paper presented at the Conmputer Aided Learning and Instruction in Science and Engineering, San Sebastian, Spain.

  • Looi, C.-K., & Tan, B. T. (1998). A cognitive apprenticeship-based environment for learning word problem solving. Journal of Computers in Mathematics abnd Science Teaching, 17(4).

  • Marshall, S. P. (1995). Schemas in problem solving. Cambridge: Cambridge University Press.

    Google Scholar 

  • McArthur, D., Lewis, M., Ormseth, T., Robyn, A., Stasz, C., & Voreck, D. (1989). Algebraic thinking tools: Support for modeling situations and solving problems in Kids’ world. Retrieved from Santa Monica, CA.

  • Metcalf, S. J. (1999). The design of guided learning-adaptable scaffolding in interactive learning environments. (Ph. D.), University of Michigan, Ann Arbor, MI.

  • Metcalf, S. J., Krajcik, J., & Soloway, E. (2000). Model-it: A design retrospective. In M. J. Jacobson & R. B. Kozma (Eds.), Innovations in science and mathematics education: Advanced designs for technologies of learning (pp. 77–115).

  • Munez, D., Orrantia, J., & Rosales, J. (2013). The effect of external representations on compare word problems: Supporting mental model construction. Journal of Experimental Education, 81(3), 337–355. https://doi.org/10.1080/00220973.2012.715095.

    Article  Google Scholar 

  • Nathan, M. J., Kintsch, W., & Young, E. (1992). A theory of algebra-word-problem comprehension and its implications for the design of learning enviroments. Cognition and Instruction, 9(4), 329–389.

    Google Scholar 

  • NGA & CCSSO. (2011). Common core state standards for mathematics. In: Downloaded from www.corestandards.org on October 31, 2011.

  • NGSS. (2013). Next generation science standards: For states, by states: The National Academies.

  • Pareto, L., Arvemo, T., Dahl, Y., Haake, M., & Gulz, A. (2011). A teachable-agent arithmetic game's effects on mathematics understanding, attitude and self-efficacy. In G. Biswas & S. Bull (Eds.), Proceedings of artificial intelligence in education (pp. 247–255). Berlin: Springer.

    Google Scholar 

  • Pauli, C., & Reusser, K. (1997). Supporting collaborative problem solving: Supporting collaboration and supporting problem solving. Paper presented at the Proceedings of Swiss Workshop on Collaborative and Distributed Systems.

  • Quinn, J., & Alessi, S. M. (1994). The effects of simulation complexity and hypothesis-generation strategy on learning. Journal of Research in Computing in Education, 27(1), 75–92.

    Google Scholar 

  • Ramachandran, S. (2003). A meta-cognitive computer-based tutor for high-school algebra. In D. Lassner & C. McNaught (Eds.), Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2003 (pp. 911–914). Chesapeake, VA: AACE.

    Google Scholar 

  • Reed, S. K. (1998). Word problems: Research and curriculum reform. New York: Routledge.

    Google Scholar 

  • Reif, F., & Scott, L. A. (1999). Teaching scientific thinking skills: Students and computers coaching each other. American Journal of Physics, 67(9), 819–831.

    Google Scholar 

  • Reimann, P. (2011). Design-based research. In L. Markauskaite, P. Freebody, & J. Irwin (Eds.), Methodological choice and design: Scholarship, policy and practice in social and educational research (pp. 37–50). Berline: Springer.

    Google Scholar 

  • Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out examples: The effects of example variability and elicited self-explanations. Contemporary Educational Psychology, 23, 90–108.

    Google Scholar 

  • Reusser, K. (1993). Tutoring systems and pedagogical theory: Representational tools for understanding, planning and reflection in problem solving. In S. P. Lajoie & S. J. Derry (Eds.), Computers as cognitive tools (pp. 143–178). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Reusser, K. (1996). From cognitive modeling to the design of pedagogical tools. In S. Vosniadou, E. De Corte, R. Glaser, & H. Mandl (Eds.), International perspectives on the design of technology-supported learning environments. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Riley, M. S., & Greeno, J. G. (1988). Developmental analysis of understanding language about quantities and of solving problems. Cognition and Instruction, 5(1), 49–101.

    Google Scholar 

  • Schwartz, D. L., Chase, C., Chin, D. B., Oppezzo, M., Kwong, H., Okita, S. Y., et al. (2009). Interactive metacognition: Monitoring and regulating a teachable agent. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 340–358). New York: Taylor & Francis.

    Google Scholar 

  • Segedy, J. R., Kinnebrew, J. S., & Biswas, G. (2012). Supporting student learning using converstational agents in a teachable agent environment. Paper presented at the Proceedings of the 10th International Conference of the Learning Sciences, Sydney, Australia.

  • Shih, B., Koedinger, K. R., & Scheines, R. (2008). A response time model for bottom-out hints as worked examples. In C. Romero, S. Ventura, M. Pechenizkiy, & R. S. J. d. Baker (Eds.), Handbook of educational data mining (pp. 201–211). Boca Raton, FL: Taylor & Francis.

    Google Scholar 

  • Simsek, E., Xenidou-Deryou, I., Karadeniz, I., & Jones, I. (2019). The conception of substituion of the equals sign plays a unique role in students' algebra performance. Journal of Numerical Cognition, 5, 24–37.

    Google Scholar 

  • Swaak, J., van Joolingen, W. R., & de Jong, T. (1998). Supporting simulation-based learning; the effects of model progression and assignments on definition and intuitive knowledge. Learning and Instruction, 8(3), 235–252.

    Google Scholar 

  • van Joolingen, W. R., De Jong, T., Lazonder, A., Savelsbergh, E. R., & Manlove, S. (2005). Co-lab: Research and development of an online learning environment for collaborative scientific discovery learning. Computers in Human Behavior, 21, 671–688.

    Google Scholar 

  • VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence and Education, 16, 227–265.

    Google Scholar 

  • VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems and other tutoring systems. Educational Psychologist, 46(4), 197–221.

    Google Scholar 

  • VanLehn, K. (2013). Model construction as a learning activity: A design space and review. Interactive Learning Environments, 21(4), 371–413.

    Google Scholar 

  • Vanlehn, K., & Chi, M. (2012). Adaptive expertise as acceleration of future learning: A case study. In P. J. Durlach & A. Lesgold (Eds.), Adaptive technologies for training and education. Cambridge: Cambridge University Press.

    Google Scholar 

  • VanLehn, K., Chung, G., Grover, S., Madni, A., & Wetzel, J. (2016). Learning science by constructing models: Can dragoon increase learning without increasing the time required? International Journal of Artificial Intelligence in Education, 26(4), 1033–1068.

    Google Scholar 

  • VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rose, C. P. (2007). When are tutorial dialogues more effective than reading? Cognitive Science, 31(1), 3–62.

    Google Scholar 

  • VanLehn, K., Lynch, C., Schultz, K., Shapiro, J. A., Shelby, R. H., Taylor, L., et al. (2005). The Andes physics tutoring system: Lessons learned. International Journal of Artificial Intelligence and Education, 15(3), 147–204.

    Google Scholar 

  • VanLehn, K., Wetzel, J., Grover, S., & van de Sande, B. (2017). Learning how to construct models of dynamic systems: An initial evaluation of the dragoon intelligent tutoring system. IEEE Transactions on Learning Technologies, 10(2), 154–167.

    Google Scholar 

  • Wetzel, J., VanLehn, K., Chaudhari, P., Desai, A., Feng, J., Grover, S., et al. (2016). The design and development of the dragoon intelligent tutoring system for model construction: Lessons learned. Interactive Learning Environments, 25(3), 361–381. https://doi.org/10.1080/10494820.2015.1131167.

    Article  Google Scholar 

  • White, B. Y. (1984). Designing computer games to help physics students understand Newton's Laws of motion. Cognition and Instruction, 1(1), 69–108.

    Google Scholar 

  • White, B. Y. (1993). ThinkerTools: Causal models, conceptual change and science education. Cognition and Instruction, 10(1), 1–100.

    Google Scholar 

  • White, B. Y., & Frederiksen, J. R. (1990). Causal model progressions as a foundation for intelligent learning environments. Artificial Intelligence, 42, 99–157.

    Google Scholar 

  • Willis, G. B., & Fuson, K. C. (1988). Teaching children to use schematic drawings to solve addition and subtraction word problems. Journal of Educational Psychology, 80(2), 192–201.

    Google Scholar 

  • Xin, Y. P., Jitendra, A. K., & Deatline-Buchman, A. (2005). Effects of mathematical word problem-solving instruction on middle school students with learning problems. The Journal of Special Education, 39(3), 181–192.

    Google Scholar 

  • Xin, Y. P., Zhang, D., Park, J. Y., Tom, K., Whipple, A., & Si, L. (2001). A comparison of two mathematics problem-solving strategies: Facilitate algebra-readiness. The Journal of Educational Research, 104(6), 381–395.

    Google Scholar 

  • Zhang, L., Vanlehn, K., Girard, S., Burleson, W., Chavez-Echeagaray, M.-E., Gonzalez-Sanchez, J., & Hidalgo Pontet, Y. (2014). Evaluation of a meta-tutor for constructing models of dynamic systems. Computers & Education, 75, 196–217.

    Google Scholar 

Download references

Acknowledgements

This research is supported by the US National Science Foundation Grant IIS-1628782. We gratefully acknowledge the help of Ritesh Samala, Sara Loucks and Swarnalakshmi Lakshmanan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt VanLehn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VanLehn, K., Banerjee, C., Milner, F. et al. Teaching Algebraic Model Construction: A Tutoring System, Lessons Learned and an Evaluation. Int J Artif Intell Educ 30, 459–480 (2020). https://doi.org/10.1007/s40593-020-00205-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40593-020-00205-3

Keywords

Navigation