Skip to main content
Log in

Development of Robotic Grasping Gripper Based on Smart Fuzzy Controller

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

An alternative robotic grasping gripper including a vision system, machine fingers, pressure modules, and smart fuzzy grasping controller is designed and implemented in this paper. To avoid the redundant computation of inverse kinematics, the relative coordinates are adopted in the proposed architecture. To identify the stiffness and shape of different grasping objects, a smart fuzzy grasping controller is embedded into the recognition process first. According to the identifying results, the membership functions of the smart fuzzy grasping controller are precisely tuned to generate the joint angles of the servo motors online. The effectiveness is verified by some experimental results, and the proposed architectures are implemented in the home-made robotic grasping gripper in laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Chuankai, L., Hong, Q.: Vision-based 3-D grasping of 3-D objects with a simple 2-D gripper. IEEE Trans. Syst. Man. Cybern. 44(5), 605–620 (2014)

    Article  Google Scholar 

  2. Bodenhagen, L., Fugl, A.R., 2014: An adaptable robot vision system performing manipulation actions with flexible objects. IEEE Trans. Autom. Sci. Eng. 11(3), 749–765 (2014)

    Article  Google Scholar 

  3. Lippiello, V., Ruggiero, F.: Visual grasp planning for unknown objects using a multifingered robotic hand. IEEE/ASME Trans. Mechatron. 18(3), 1050–1059 (2013)

    Article  Google Scholar 

  4. Chen, S.Y.: Kalman filter for robot vision : a survey. IEEE Trans. Indus. Electron. 59(11), 4409–4420 (2012)

    Article  Google Scholar 

  5. Jepson, A.D., Fleet, D.J., EI-Maraghi, T.F.: Robust online appearance model for visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1296–1311 (2003)

    Article  Google Scholar 

  6. Nguyen, H.T., Smeulders, A.W.M.: Fast occluded object tracking by a robust appearance filter. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1099–1104 (2004)

    Article  Google Scholar 

  7. Yilmaz, A., Li, X., Shan, M.: Contour based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1531–1536 (2004)

    Article  Google Scholar 

  8. Hariharakrishnan, K., Schonfeld, D.: Fast object tracking using adaptive block matching. IEEE Trans. Multimed. 7(5), 853–859 (2005)

    Article  Google Scholar 

  9. Pan, J., Hu, B.: Robust occlusion handling in object tracking. IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8, Minneapolis, 17–22 June 2007

  10. Romano, J.M., Hsiao, K.: Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Robot. 27(6), 1067–1079 (2011)

    Article  Google Scholar 

  11. Suwanratchatamanee, K., Matsumoto, M.: Robotic tactile sensor system and applications. IEEE Trans. Indus. Electron. 57(3), 1074–1087 (2010)

    Article  Google Scholar 

  12. Endo, T., Kawasaki, H.: Five-fingered haptic interface robot: HIRO III. IEEE Trans. Haptics 4(1), 14–27 (2010)

    Article  Google Scholar 

  13. Bekiroglu, Y., Laaksonen, J.: Assessing grasp stability based on learning and haptic data. IEEE Trans. Robot. 27(3), 616–629 (2011)

    Article  Google Scholar 

  14. Dasilva, M.M., Bruels, O., Desmet, W., Vanbrussel, H.: Integrated structure and control design for mechatronic systems with configuration-dependent dynamics. Mechatronics 19(6), 1016–1025 (2009)

    Article  Google Scholar 

  15. Ishak, A.J., So, A.C., Ashaari, M.A.: Position control of arm mechanism using PID controller. J. Theor. Appl. Inf. Technol. 47(2), 798–806 (2013)

    Google Scholar 

  16. Han, X., Fridman, F., Spurgeon, S.K.: Sliding-mode control of uncertain systems in the presence of unmatched disturbances with applications. Int. J. Control 83(12), 2413–2426 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pai, N.S., Yau, H.T.: Generalized projective synchronization for the horizontal platform systems via an integral-type sliding mode control. J. Vib. Control 17(1), 11–17 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mamani, G., Becedas, J., Feliu, V.: Sliding mode tracking control of a very lightweight single-link flexible robot robust to payload changes and motor friction. J. Vib. Control 18(8), 1141–1155 (2012)

    Article  MathSciNet  Google Scholar 

  19. Ross, T.J.: Fuzzy Logic: With Engineering Applications, 2nd edn. John Willy & Sons Inc, London (2004)

    Google Scholar 

  20. Sezer, S., Atalay, A.E.: Application of fuzzy logic based control algorithms on a railway vehicle considering random track irregularities. J. Vib. Control 18(8), 1177–1198 (2012)

    Article  Google Scholar 

  21. Su, K.H.: Robust tracking control design and its application to balance a two-wheeled robot steering on a bumpy road, Journal of Systems and Control Engineering, Proceedings of the Institution of Mechanical Engineers, Part I, vol. 226, no. 7, pp. 887–903, 2012

  22. Aloui, S., Pages, O., El, H.A., Chaari, A., Koubaa, Y.: Improved fuzzy sliding mode control for a class of MIMO nonlinear uncertain and perturbed systems. Appl. Soft Comput. 11(1), 820–826 (2011)

    Article  Google Scholar 

  23. Faieghi, M.R., Delavari, H., Baleanu, D.: Control of an uncertain fractional-order Liu system via fuzzy fractional-order sliding mode control. J. Vib. Control 18(9), 1366–1374 (2012)

    Article  MathSciNet  Google Scholar 

  24. Pan, Y.P., Er, M.J., Huang, D., Sun, T.: Practical adaptive fuzzy H∞tracking control of uncertain nonlinear systems. Int. J. Fuzzy Syst. 14(4), 463–473 (2012)

    MathSciNet  Google Scholar 

  25. Pan, Y.P., Er, M.J.: Enhanced adaptive fuzzy control with optimal approximation error convergence. IEEE Trans. Fuzzy Syst. 21(6), 1123–1132 (2013)

    Article  Google Scholar 

  26. Kim, Y.G., Kim, S.Y., Kim, H.T., Lee, S.W., Yu, B.S.: Prediction of the maneuverability of a large container ship with twin propellers and twin rudders. J. Mar. Sci. Technol. 12(3), 130–138 (2007)

    Article  Google Scholar 

  27. Li, D.Z., Wang, W.: An intelligent sliding mode controller for vibration suppression in flexible structures. J. Vib. Control 17(14), 2187–2198 (2011)

    Article  MathSciNet  Google Scholar 

  28. Yeh, K., Chen, C.W., Lo, D.C., Liu, K.F.R.: Neural-network fuzzy control for chaotic tuned mass damper systems with time delays. J. Vib. Control 18(6), 785–795 (2012)

    Article  Google Scholar 

  29. Juang, C.F., Lin, Y.Y., Tu, C.C.: A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing. Fuzzy Sets Syst. 161(19), 2552–2568 (2010)

    Article  MathSciNet  Google Scholar 

  30. El-Sousy, F.F.M.: Robust wavelet-neural-network sliding-mode control system for permanent magnet synchronous motor drive. IET Electr. Power Appl. 5(1), 113–132 (2011)

    Article  Google Scholar 

  31. Chaouch, D.E., Ahmed-Foitih, Z., Khelfi, M.F.: A self-tuning fuzzy inference sliding mode control scheme for a class of nonlinear systems. J. Vib. Control 18(10), 1494–1505 (2012)

    Article  MathSciNet  Google Scholar 

  32. Sun, T., Pei, H., Pan, Y.P., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15), 2377–2384 (2011)

    Article  Google Scholar 

  33. Sun, T., Pei, H., Pan, Y.P., Zhou, H., Zhang, C.: Robust adaptive neural network control for environmental boundary tracking by mobile robots. Int. J. Robust Nonlinear Control 23(2), 123–136 (2013)

    Article  MATH  Google Scholar 

  34. Li, X., Cheah, C.C.: Adaptive neural network control of robot based on a unified objective bound. IEEE Trans. Control Syst. Technol. 22(3), 1032–1043 (2014)

    Article  Google Scholar 

  35. Wang, C.C., Hwang, C.L., Huang, K.H., Hu, Y.Y., Cheng, C.T.: Design and implementation of vision-based fuzzy obstacle avoidance method on humanoid robot. Int. J. of Fuzzy Syst. 13(1), 45–54 (2011)

    Google Scholar 

  36. http://www.arduino.cc/

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministry of Science and Technology of Taiwan, R.O.C. through its Grant No. NSC102-2221-E-034-005- and Grant No. MOST103-2221-E-034-017-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Ho Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, KH., Huang, SJ. & Yang, CY. Development of Robotic Grasping Gripper Based on Smart Fuzzy Controller. Int. J. Fuzzy Syst. 17, 595–608 (2015). https://doi.org/10.1007/s40815-015-0042-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0042-3

Keywords

Navigation