Skip to main content
Log in

An Effective Torque Ripple Reduction for Permanent Magnet Synchronous Motor Using Ant Colony Optimization

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In order to optimize the direct torque control performance of the permanent magnet synchronous motor (PMSM) system with different disturbances and uncertainties, development of an effective torque ripple reduction technique for PMSM servo drive using ant colony optimization (ACO) has been explained in this paper. ACO algorithm has been tested on a large number of samples as it produces a reduced total harmonic distortion result than other algorithms. So it is robust against motor parameter and load torque variations due to the usages of space vector modulation technique. The performance of the proposed controller is established through MATLAB and Simulink simulation with the comparisons of conventional and ANFIS controller. The simulation results explain a significant augmentation in abbreviating development time, and the system performance is also improved and it produces results very close to those of the currently best performing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou, C., Quach, D., Xiong, N.: An improved direct Adaptive fuzzy controller of an Uncertain PMSM for web based E-series systems. IEEE Trans. Fuzzy Syst. 23(1), 58–71 (2014)

    Article  Google Scholar 

  2. Li, S., Gu, H.: Fuzzy adaptive internal model control schemes for PMSM speed regulation systems. IEEE Trans. Ind. Inform. 8(4), 767–779 (2012)

    Article  Google Scholar 

  3. Wang, G., Yang, R., Xu, D.: DSP-based control of sensorless IPMSM drives for wide-speed-range operation. IEEE Trans. Ind. Appl. 60(2), 720–727 (2013)

    Google Scholar 

  4. Choi, H.H., Jung, J.W.: Discrete-time fuzzy speed regulator design for PM synchronous motor. IEEE Trans. Power Electron. 60(2), 600–607 (2013)

    MathSciNet  Google Scholar 

  5. Hamida, M.A., De Leon, J., Boisliveau, R.: An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification. IEEE Trans. Ind. Electron. 60(2), 739–748 (2013)

    Article  Google Scholar 

  6. Zhang, X., Sun, L., Zhao, K., Sun, L.: Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Trans. Power Electron. 28(3), 1358–1365 (2013)

    Article  Google Scholar 

  7. Vu, N.T.-T., Yu, D.-Y., Choi, H.H., Jung, J.-W.: T–S fuzzy-model-based sliding-mode control for surface-mounted permanent-magnet synchronous motors considering uncertainties. IEEE Trans. Ind. Electron. 60(10), 4281–4291 (2013)

    Article  Google Scholar 

  8. Barkat, S., Tlemcani, A., Nouri, H.: Non interacting Adaptive control of PMSM using Interval Type-2 Fuzzy logic systems. IEEE Trans. Fuzzy Syst. 19(5), 925–936 (2011)

    Article  Google Scholar 

  9. Senthil Rama, R., Latha, P.: Fuzzy adaptive PI controller for direct torque control algorithm based permanent magnet synchronous motor. IEEE Trans. Fuzzy Syst. 3(5), 570–574 (2013)

    Google Scholar 

  10. Zhang, Z., Tang, R.: Novel direct torque control based on space vector modulation with adaptive stator flux observer for induction motors. IEEE Trans. Magn. 46(8), 3133–3137 (2010)

    Article  Google Scholar 

  11. Jiang, D., Zhao, Z., Wang, F.: Sliding mode observer for PMSM speed and rotor position considering saliency. In: Proceedings of the IEEE Power Electronics Specialists Conference, June 2008, pp. 809–814

  12. Zhong, L., Rahman, M.F.: A direct torque controller for permanent magnet synchronous motor drives. IEEE Trans. Energy Convers. 14(3), 637–642 (1999)

    Article  Google Scholar 

  13. Takahasi, I., Noguchi, T.: A new quick-response and high efficiency control strategy of an induction motor. IEEE Trans. Ind. Appl. IA-22(5), 820–827 (1986)

    Article  Google Scholar 

  14. Qu, X., Zhu, J., Mao, H.: Neural network based fuzzy sliding mode direct torque control of PMSM. IEEE Conf. 2, 13–17 (2010)

    Google Scholar 

  15. Gupta, A., Khambadkone, A.M.: A space vector PWM scheme for multi level inverters based on two level space vector PWM. IEEE Trans. Ind. Electron. 53(5), 1631–1639 (2006)

    Article  Google Scholar 

  16. Qiao, Z.: New sliding-mode observer for position sensorless control of permanent-magnet synchronous. IEEE Trans. Ind. Appl. 60(2), 710–719 (2013)

    Google Scholar 

  17. Dorco, M., Stutzle, T.: Ant Colony Optimization. Prentice-Hall of India Private Limited, New Delhi (2006)

  18. Bose, B.K.: Modern Power Electronics and AC Drives. Machine Press, Beijing (2004)

    Google Scholar 

  19. Ross, T.J.: Fuzzy Logic with Engineering Applications. McGraw-Hill International Editions, New York (1997)

  20. Mendel, J.M., Mouzouri, G.C.: Designing fuzzy logic system. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 44(11), 885–895 (1997)

    Article  Google Scholar 

  21. Casadei, D., Serra, G.: Implementation of a direct torque control algorithm for induction motors based on discrete space vector modulation. IEEE. Trans. Power Electron. 15(4), 769–777 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Senthil Rama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil Rama, R., Latha, P. An Effective Torque Ripple Reduction for Permanent Magnet Synchronous Motor Using Ant Colony Optimization. Int. J. Fuzzy Syst. 17, 577–584 (2015). https://doi.org/10.1007/s40815-015-0077-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0077-5

Keywords

Navigation