Skip to main content

Fuzzy Quadrature Particle Filter for Maneuvering Target Tracking

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a novel fuzzy quadrature particle filter (FQPF) based on maximum entropy fuzzy clustering for maneuvering target tracking is proposed. The novelties of the fuzzy quadrature particle filter are in the update step in which the predicted and posterior probability density functions are approximated by introducing a set of quadrature point probability densities based on the Gauss–Hermite quadrature rule as a Gaussian. The particle and quadrature point weights can be adaptively estimated based on the weighting exponent and fuzzy membership degrees provided by a modified version of maximum entropy fuzzy clustering algorithm. Unlike the Gaussian particle filter (GPF) using the prior distribution as the proposal distribution, the new FQPF uses a set of modified quadrature point probability densities as the proposal distribution that can effectively enhance the diversity of samples and improve the approximate performance. Finally, simulation results are presented to demonstrate the versatility and improved performance of the fuzzy quadrature particle filter over other nonlinear filtering approaches, namely the unscented Kalman filter, quadrature Kalman filter, particle filter, and GPF, to solve maneuvering target tracking problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kim, Beomjun, Yi, Kyongsu, Yoo, Hyun-Jae, Chong, Hyok-Jin, Ko, Bongchul: An IMM/EKF approach for enhanced multitarget state estimation for application to integrated risk management system. IEEE Trans. Veh. Technol. 64(3), 876–889 (2015)

    Article  Google Scholar 

  2. Chen, Y.-Y., Young, K.-Y.: An intelligent radar predictor for high-speed moving-target tracking. Int. J. Fuzzy Syst. 6(2), 90–99 (2004)

    Google Scholar 

  3. Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(4), 401–422 (2004)

    Article  Google Scholar 

  4. García-Fernández, A.F., Morelande, M.R., Grajal, J.: Truncated unscented kalman filtering. IEEE Trans. Signal Process. 60(7), 3372–3386 (2012)

    Article  MathSciNet  Google Scholar 

  5. Gustafsson, F., Hendeby, G.: Some relations between extended and unscented Kalman filters. IEEE Trans. Signal Process. 60(2), 545–555 (2012)

    Article  MathSciNet  Google Scholar 

  6. Li, L., Xie, W., Liu, Z.: Bearings-only maneuvering target tracking based on truncated quadrature Kalman filtering. AEU-Int. J. Electron. Commun. 69(1), 281–289 (2015)

    Article  Google Scholar 

  7. Mohammadi, A., Plataniotis, K.N.: Complex-valued gaussian sum filter for nonlinear filtering of non-gaussian/non-circular noise. IEEE Signal Process. Lett. 22(4), 440–444 (2015)

    Article  Google Scholar 

  8. Ienkaran, A., Simon, H.: Discrete-time nonlinear filtering algorithms using gauss–hermit quadrature. Proce IEEE 95, 953–976 (2007)

    Article  Google Scholar 

  9. Yin, S., Zhu, X.: Intelligent particle filter and its application to fault detection of nonlinear system. IEEE Trans. Industr. Electron. 62(6), 3852–3861 (2015)

    Google Scholar 

  10. Sedai, S., Bennamoun, M., Huynh, D.Q.: A gaussian process guided particle filter for tracking 3D human pose in video. IEEE Trans. Image Process. 22(11), 4286–4300 (2013)

    Article  MathSciNet  Google Scholar 

  11. Lee, S.H., West, M.: Convergence of the markov chain distributed particle filter (MCDPF). IEEE Trans. Signal Process. 61(4), 801–812 (2013)

    Article  MathSciNet  Google Scholar 

  12. Ondrej, H., Hlawatsch, F., Djuri´c, P.M.: Distributed particle filtering in agent networks. IEEE Signal Process. Mag. 30, 61–81 (2013)

    Article  Google Scholar 

  13. Li, L., Ji, H., Luo, J.: The iterated extended kalman particle filter. International Symposium on Communications and Information Technologies, pp. 1172–1175. (2005)

  14. Li, Y., Zhuang, X., Liu, Y.: UPF tracking method based on color and sift features adaptive fusion. Int. J. Signal Process. Image Process. Pattern Recognit. 7(6), 379–390 (2014)

    Article  Google Scholar 

  15. Kotecha, J.H., Djuric, P.M.: Gaussian particle filtering. IEEE Trans. Signal Process. 51(10), 2592–2601 (2003)

    Article  MathSciNet  Google Scholar 

  16. Kotecha, J.H., Djuric, P.M.: Gaussian sum particle filtering. IEEE Trans. Signal Process. 51(10), 2602–2612 (2003)

    Article  MathSciNet  Google Scholar 

  17. Krinidis, S., Chatzis, V.: A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)

    Article  MathSciNet  Google Scholar 

  18. Chao, C.-H., Hsueh, B.-Y., Hsiao, M.-Y., Tsai, S.-H., Li, T.-H.S.: fuzzy target tracking and obstacle avoidance of mobile robots with a stereo vision system. Int. J. Fuzzy Syst. 11(3), 183–191 (2009)

    Google Scholar 

  19. Thomas, V., Ray, A.K.: Fuzzy particle filter for video surveillance. IEEE Trans. Fuzzy Syst. 19(5), 937–945 (2011)

    Article  Google Scholar 

  20. Pai, N.-S., Li, T.-H.S.: Tracking 3D moving targets with an integrated fuzzy Kalman filter. Int. J. Fuzzy Syst. 5(4), 201–211 (2003)

    Google Scholar 

  21. Aziz, A.M.: A novel all-neighbor fuzzy association approach for multitarget tracking in a cluttered environment. Sig. Process. 91(8), 2001–2015 (2011)

    Article  MATH  Google Scholar 

  22. Liu, P.X., Meng, M.Q.-H.: Online data-driven fuzzy clustering with applications to real-time robotic tracking. IEEE Trans. Fuzzy Syst. 12(4), 516–523 (2004)

    Article  Google Scholar 

  23. Li, L., Xie, W.: Intuitionistic fuzzy joint probabilistic data association filter and its application to multitarget tracking. Sig. Process. 96(3), 433–444 (2014)

    MathSciNet  Google Scholar 

  24. Fox, D.: Adapting the sample size in particle filters through KLD-sampling. Int. J. Robot. Res. 22(12), 98521003 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and all anonymous reviewers for their valuable comments. This work was supported by the National Natural Science Foundation of China (61301074, 61271107, 61375015), Natural Science Foundation of the Guangdong Province of China (S2012010009417), Key Project of National Science & technology of pillar program (2011BAH24B12), Science & Technology Program of Shenzhen (No. JCYJ 20130329105816574, JCYJ20140418095735618), and Defense Advanced Research Fund Project (91400C800501140C80340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-qun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Lq., Li, Cl., Cao, Wm. et al. Fuzzy Quadrature Particle Filter for Maneuvering Target Tracking. Int. J. Fuzzy Syst. 18, 647–658 (2016). https://doi.org/10.1007/s40815-015-0105-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0105-5

Keywords