Abstract
The purpose of this paper is to introduce some new Bonferroni mean operators under interval-valued 2-tuple linguistic environment. First, a class of new operational laws of interval-valued 2-tuple linguistic are proposed. Then, we put forward some new interval-valued 2-tuple linguistic Bonferroni mean (IV2TLBM) operators. Moreover, properties and special cases of new aggregation operators are investigated. The main characteristic of the IV2TLBM is that the interrelationship among the input arguments and the closed operations are taken into account. Finally, an approach to multiple attributes group decision making is presented, and a numerical example is given to illustrate the proposed method.














Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Zadeh, L.A.: The concept of a linguistic variable and application to approximate reasoning. Inf. Sci. 8, 199–249 (1975)
Bordogna, G., Fedrizzi, M., Pasi, G.: A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Trans. Syst. Man Cybern. 27, 126–133 (1997)
Degani, R., Bortolan, G.: The problem of linguistic approximation in clinical decision making. Int. J. Approx. Reason. 2, 144–162 (1988)
Xu, Z.S.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166, 19–30 (2004)
Merigó, J.M., Casanovas, M., Palacios-Marqués, D.: Linguistic group decision making with induced aggregation operators and probabilistic information. Appl. Soft Comput. 24, 669–678 (2014)
Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 114, 43–58 (2000)
Merigó, J.M., Casanovas, M.: Decision making with distance measures and linguistic aggregation operators. Int. J. Fuzzy Syst. 12, 190–198 (2010)
Yang, W.E., Wang, X.F., Wang, J.Q.: Counted linguistic variable in decision-making. Int. J. Fuzzy Syst. 16, 196–203 (2014)
Wang, X.F., Wang, J.Q., Deng, S.Y.: Some geometric operators for aggregating intuitionistic linguistic information. Int. J. Fuzzy Syst. 7, 268–278 (2015)
Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8, 746–752 (2000)
Jiang, Y.P., Fan, Z.P.: Property analysis of the aggregation operators for 2-tuple linguistic information. Control Decis. 18, 754–757 (2003)
Merigó, J.M., Gil-Lafuente, A.M.: Induced 2-tuple linguistic generalized aggregation operators and their application in decision-making. Inf. Sci. 226, 1–16 (2013)
Wang, J., Wang, J.Q., Zhang, H.Y., Chen, X.H.: Multi-criteria group decision-making approach based on 2-tuple linguistic aggregation operators with multi-hesitant fuzzy linguistic information. Int. J. Fuzzy Syst. (2015). doi:10.1007/s40815-015-0050-3
Lin, J., Lan, J.B., Hao, Y.H.: Multi-attribute group decision-making method based on the aggregation operators of interval 2-tuple linguistic information. J. JiLin Normal Univ. 1, 5–9 (2009)
Liu, H.C., You, J.X., Lu, C., Shan, M.M.: Application of interval 2-tuple linguistic MULTIMOORA method for health-care waste treatment technology evaluation and selection. Waste Manag 34, 2355–2364 (2014)
Chen, C.T., Tai, W.S.: Measuring the intellectual capital performance based on 2-tuple fuzzy linguistic information. Proceedings of the 10th Annual Meeting of Asia Pacific Region of Decision Sciences Institute, Taiwan, (2005)
Zhang, H.M.: The multiattribute group decision making method based on aggregation operators with interval-valued 2-tuple linguistic information. Math. Comput. Model. 56, 27–35 (2012)
Zhang, H.M.: Some interval-valued 2-tuple linguistic aggregation operators and application in multiattribute group decision making. Appl. Math. Model. 37, 4269–4282 (2013)
Zhang, Z.M.: Interval-valued 2-tuple prioritized aggregation operators and their application to multiple attribute group decision making. Br. J. Appl. Sci. Technol. 4, 3217–3236 (2014)
Xu, Z.S.: Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 168, 171–184 (2004)
Lan, J.B., Sun, Q., Chen, Q.M., Wang, Z.X.: Group decision making based on induced uncertain linguistic OWA operators. Decis. Support Syst. 55, 293–303 (2013)
Xia, M.M., Xu, Z.S., Zhu, B.: Some issues on intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm. Knowledge-Based Syst. 31, 78–88 (2012)
Tao, Z.F., Chen, H.Y., Zhou, L.G., Liu, J.P.: On new operational laws of 2-tuple linguistic information using Archimedean t-norm and s-norm. Knowledge-Based Syst. 66, 156–165 (2014)
Yager, R.R.: The power average operator. In: IEEE Translational Systems, Man, and Cybernetics.-Part A: Systems and Humans, vol. 31, no. 6, pp. 724–731, 2001
Xu, Y.J., Merigo, J.M., Wang, H.M.: Linguistic power aggregation operators and their application to multiple attribute group decision making. Appl. Math. Model. 36, 5427–5444 (2012)
Choquet, G.: Theory of capacities. Annales del Institut Fourier 5, 131–295 (1953)
Yager, R.R.: Induced aggregation operators. Fuzzy Sets Syst. 137, 59–69 (2003)
Yang, W., Chen, Z.P.: New aggregation operators based on the Choquet integral and 2-tuple linguistic information. Expert Syst. Appl. 39, 2662–2668 (2012)
Shapley, L.S.: A Value for n-Person Game. Princeton University Press, Princeton (1953)
Meng, F.Y., Zhang, Q., Chen, H.: Approaches to multiple-criteria group decision making based on interval-valued intuitionistic fuzzy Choquet integral with respect to the generalized λ-Shapley index. Knowledge-Based Syst. 37, 237–249 (2013)
Meng, F.Y., Chen, X.H., Zhang, Q.: Induced generalized hesitant fuzzy Shapley hybrid operators and their application in multi-attribute decision making. Appl. Soft Comput. 28, 599–607 (2015)
Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, New York (2007)
Liu, P.D., Liu, Z.M., Zhang, X.: Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making. Appl. Math. Comput. 230, 570–586 (2014)
Bonferroni, C.: Sulle medie multiple di potenze. Bolletino Matematica Italiana 5, 267–270 (1950)
Yager, R.R.: On generalized Bonferroni mean operators for multi-criteria aggregation. Int. J.Approx. Reason. 50, 1279–1286 (2009)
Yager, R.R., Beliakov, G., James, S.: On generalized Bonferroni means. In: Proceedings Eurofuse Workshop Preference Modelling Decision Analysis, Spain, pp. 16–18, Sep 2009
Beliakov, G., James, S., Mordelova, J., Ruckschlossova, T., Yager, R.R.: Generalized Bonferroni mean operators in multi-criteria aggregation. Fuzzy Sets Syst. 161, 2227–2242 (2010)
Xu, Z.S., Yager, R.R.: Intuitionistic fuzzy Bonferroni means. IEEE Trans. Syst. Man Cybern. 41, 568–578 (2011)
Xu, Z.S., Chen, Q.: A multi-criteria decision making procedure based on interval-valued intuitionistic fuzzy Bonferroni means. J. Syst. Sci. Syst. Eng. 20, 217–228 (2011)
Wei, G.W., Zhao, X.F., Lin, R., Wang, H.J.: Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl. Math. Model. 37, 5277–5285 (2013)
Zhu, B., Xu, Z.S., Xia, M.M.: Hesitant fuzzy geometric Bonferroni means. Inf. Sci. 205, 72–85 (2010)
Xia, M.M., Xu, Z.S., Zhu, B.: Generalized intuitionistic fuzzy Bonferroni means International. Int. J. Intell. Syst. 27, 23–47 (2012)
Zhang, Z.M., Wu, C.: 2-tuple linguistic Bonferroni mean operators and their application to multiple attribute group decision making. Br. J. Math. Comput. Sci. 4, 1567–1614 (2014)
Herrera, F., Martínez, L.: An approach for combining linguistic and numerical information based on 2-tuple fuzzy linguistic representation model in decision-making. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 8, 539–562 (2000)
Zhang, H.M.: Some interval-valued 2-tuple linguistic aggregation operators and application in multiattribute group decision making. Appl. Math. Model. 37, 4269–4282 (2013)
Schweizer, B., Sklar, A.: Associative functions and abstract semi-groups. Publicationes Mathematicae Debrecen 10, 69–81 (1963)
Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River, NJ (1995)
Ling, C.M.: Representation of associative functions. Publicationes Mathematicae Debrecen 12, 189–212 (1965)
Zhu, B., Xu, Z.S., Xia, M.M.: Hesitant fuzzy geometric Bonferroni means. Inf. Sci. 205(1), 72–85 (2010)
Herrera, F., Herrera-Viedma, E., Martínez, L.: A fusion approach for managing multi-granularity linguistic terms sets in decision making. Fuzzy Sets Syst. 114, 43–58 (2000)
Acknowledgments
The work was supported by National Natural Science Foundation of China (Nos. 71301001, 71371011, 11426033), Provincial Natural Science Research Project of Anhui Colleges (No.KJ2015A379), Higher School Specialized Research Fund for the Doctoral Program (No.20123401110001), Humanity and Social Science Youth Foundation of Ministry of Education (No. 13YJC630092), Anhui Provincial Philosophy and Social Science Planning Youth Foundation (No. AHSKQ2014D13), The Doctoral Scientific Research Foundation of Anhui University.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
The Proof of Theorem 3.1:
-
(1)
According to the Definition 3.1, we know that \(A \oplus B = \left[ \begin{aligned} \Delta \left\{ {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))} \right]} \right\}, \hfill \\ \Delta \left\{ {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))} \right]} \right\} \hfill \\ \end{aligned} \right]\). It is clear that \(\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right) \le \Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right),\,\,\Delta^{ - 1} \left( {s_{k} , \alpha_{k} } \right) \le \Delta^{ - 1} \left( {s_{l} , \alpha_{l} } \right),\) and \(\Delta^{ - 1} :S \times \left[ { - \frac{1}{2g},\frac{1}{2g}} \right) \to [0,1],\,\,\phi :\left[ {0, 1} \right] \to [0, + \infty )\) are strictly increasing function, such that
$$\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} )) \le \phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))$$and
$$\begin{aligned} \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{k} , \alpha_{k} } \right)} \right) \in [0, + \infty ), \hfill \\ \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{l} , \alpha_{l} } \right)} \right) \in [0, + \infty ). \hfill \\ \end{aligned}$$Noting that \(\phi^{ - 1} :[0, + \infty ) \to \left[ {0, 1} \right]\) is also a strictly increasing function, we have
$$\phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{k} , \alpha_{k} } \right)} \right)} \right) \le \phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{l} , \alpha_{l} } \right)} \right)} \right)$$and
$$\phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{k} , \alpha_{k} } \right)} \right)} \right), \phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{l} , \alpha_{l} } \right)} \right)} \right) \in \left[ {0, 1} \right].$$Thus \(\Delta (\phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{k} , \alpha_{k} } \right)} \right)} \right)) \le \Delta \left( {\phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{l} , \alpha_{l} } \right)} \right)} \right)} \right)\) and
$$\Delta \left( {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))} \right]} \right),\Delta \left( {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))} \right]} \right) \in S \times [ - \frac{1}{2g},\frac{1}{2g}).$$So, we can get
$$\begin{aligned} &[(s_{i} ,\alpha_{i} ),(s_{j} ,\alpha_{j} )] \oplus [(s_{k} ,\alpha_{k} ),(s_{l} ,\alpha_{l} )] \hfill \\ &\quad= \left[ {\Delta \left( {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))} \right]} \right),\Delta \left( {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))} \right]} \right)} \right] \in \varOmega \hfill \\ \end{aligned}$$ -
(2)
The proof is similar to that (1), it is omitted here.
-
(3)
From Definition 3.1, we can get
$$\lambda \odot A = \left[ {\Delta \left\{ {\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right]} \right\}, \Delta \left\{ {\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right]} \right\}} \right].$$Since \(\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right) \le \Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right),\phi :\left[ {0, 1} \right] \to [0, + \infty )\) is a strictly increasing function, then \(\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right) \le \lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right),{\text{ and}}\,\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right),\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) \in [0, + \infty )\) where λ ≥ 0. Besides, \(\phi^{ - 1} :[0, + \infty ) \to \left[ {0, 1} \right]\) is also a strictly increasing function, we have
$$\phi^{ - 1} \left( {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right) \le \phi^{ - 1} \left( {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right),$$and \(\phi^{ - 1} \left( {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right), \phi^{ - 1} \left( {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right) \in \left[ {0, 1} \right].\) Obviously, \(\Delta (\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right]) \le \Delta \left( {\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right]} \right),\) and \(\Delta \left( {\phi^{ - 1} [\lambda \phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))]} \right),\Delta \left( {\phi^{ - 1} [\lambda \phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))]} \right) \in S \times \left[ { - \frac{1}{2g},\frac{1}{2g}} \right)\). Thus
$$\lambda \odot A = \left[ {\Delta \left\{ {\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right]} \right\}, \Delta \left\{ {\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right]} \right\}} \right] \in \varOmega .$$ -
(4)
For any interval-valued 2-tuple linguistic, we get \(\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right) \le \Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right).\). From Definition 3.1, we have
$$A^{\lambda } = \left[ {\Delta \left( {\varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right]} \right),\Delta \left( {\varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right]} \right)} \right] .$$
In view of the function \(\varphi :\left[ {0, 1} \right] \to \left[ {0, + \infty } \right)\) is strictly decreasing function, we obtain
and \(\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right), \lambda \varphi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) \in [0, + \infty )\)
Correspondingly, the inverse function \(\varphi^{ - 1} :\left[ {0, + \infty } \right) \to \left[ {0, 1} \right]\) is also strictly decreasing function, then
and \(\varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right], \varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right] \in \left[ {0, 1} \right].\)
Thus, \(\Delta \left( {\varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right]} \right) \le \Delta \left( {\varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right]} \right)\) and\(\Delta \left( {\varphi^{ - 1} [\lambda \varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))]} \right),\Delta \left( {\varphi^{ - 1} [\lambda \varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))]} \right) \in S \times \left[ { - \frac{1}{2g},\frac{1}{2g}} \right)\).
Therefore, we have
Combining (1) with (4), we have that such operational laws are closed and the results of the operation are also interval-valued 2-tuple linguistic variables in Ω, which completes the proof. □
The Proof of Theorem 3.2:
(1) and (2) are easy to be verified, which is omitted;
(3)
(4)
Similarly, it is obtained that (5)–(8) hold, which completes the proof. □
The Proof of Theorem 3.3:
By using mathematical induction on n.
-
(1)
For n = 2, we have
$$\begin{aligned} &[(s_{1} ,\alpha_{1} ),(s^{\prime}_{1} ,\alpha^{\prime}_{1} )] \oplus [(s_{2} ,\alpha_{2} ),(s^{\prime}_{2} ,\alpha^{\prime}_{2} )] \hfill \\ &\quad = \left[ {\Delta \left\{ {\phi^{ - 1} [\sum\limits_{i = 1}^{2} {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))} ]} \right\},\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{2} {\phi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} ))} } \right]} \right\}} \right] .\hfill \\ \end{aligned}$$When n = k − 1, k ∊ N+, (1) holds, that is
$$\mathop \oplus \limits_{i = 1}^{k - 1} \left[ {\left( {s_{i} , \alpha_{i} } \right), (s_{i}^{\prime } , \alpha_{i}^{\prime } )} \right] = \left[ {\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} } \right]} \right\},\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi \left( {\Delta^{ - 1} \left( {s_{i}^{\prime } , \alpha_{i}^{\prime } } \right)} \right)} } \right]} \right\}} \right],$$then
$$\begin{aligned} &\mathop \oplus \limits_{i = 1}^{k} [(s_{i} ,\alpha_{i} ),(s^{\prime}_{i} ,\alpha^{\prime}_{i} )] \hfill \\ &\quad = \left[ {\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} } \right]} \right\},\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi \left( {\Delta^{ - 1} \left( {s_{i}^{\prime } , \alpha_{i}^{\prime } } \right)} \right)} } \right]} \right\},} \right] \oplus \left[ {\left( {s_{k} , \alpha_{k} } \right), \left( {s_{k}^{\prime } , \alpha_{k}^{\prime } } \right)} \right] \hfill \\ &\quad = \left[ \begin{aligned} &\Delta \left\{ {\phi^{ - 1} \left[ {\phi \left( {\Delta^{ - 1} \left[ {\Delta \left( {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))} } \right]} \right)} \right]} \right) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))} \right]} \right\}, \hfill \\ &\Delta \left\{ {\phi^{ - 1} \left[ {\phi \left( {\Delta^{ - 1} \left[ {\Delta \left( {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime\prime}_{i} ))} } \right]} \right)} \right]} \right) + \phi (\Delta^{ - 1} (s^{\prime}_{k} ,\alpha^{\prime}_{k} ))} \right]} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad = \left[ \begin{aligned} &\Delta \left\{ {\phi^{ - 1} \left[ {\left( {\sum\limits_{i = 1}^{k - 1} {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))} } \right) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))} \right]} \right\}{\kern 1pt} {\kern 1pt} , \hfill \\ &\Delta \left\{ {\phi^{ - 1} \left[ {\left( {\sum\limits_{i = 1}^{k - 1} {\phi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} ))} } \right) + \phi (\Delta^{ - 1} (s^{\prime}_{k} ,\alpha^{\prime}_{k} ))} \right]} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad = \left[ {\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k} {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} } \right]} \right\},\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k} {\phi \left( {\Delta^{ - 1} \left( {s_{i}^{\prime } , \alpha_{i}^{\prime } } \right)} \right)} } \right]} \right\}} \right]. \hfill \\ \end{aligned}$$So (1) holds for n = k. Thus (1) holds for all n.
-
(2)
The proof is similar to (1), thus it is omitted. □
The Proof of Theorem 4.1:
Based on the Definition 3.1, we can get
It follows from Theorem 3.3 that
So, we can obtain that
Thus, the proof of Theorem 4.1 is completed. □
The Proof of Theorem 4.2:
-
(1)
By Theorem 4.1, it has
$$\begin{aligned} &ATS - I 2TLBM^{p,q} (A_{ 1} , A_{ 2} , \ldots ,A_{n} ) \hfill \\ &= \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi} (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))]} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi} (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )) + q\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))]} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right]. \hfill \\ \end{aligned}$$Since \(A_{i} = \left[ {\left( {s_{i} , \alpha_{i} } \right), \left( {s_{i}^{\prime } , \alpha_{i}^{\prime } } \right)\left] { = } \right[\left( {s_{k} , \alpha_{k} } \right), \left( {s_{l} , \alpha_{l} } \right)} \right],\quad i = 1, 2, \ldots , n\), then
$$\begin{aligned} &ATS - I2TLBM^{p,q} (A_{1} ,A_{2} , \ldots, A_{n} ) \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{k} ,\alpha_{k} )) + q\varphi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))])} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{l} ,\alpha_{l} )) + q\varphi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))])} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi (\varphi^{ - 1} [(p + q)\varphi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))])} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi (\varphi^{ - 1} [(p + q)\varphi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))])} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad= \left[ {\left( {s_{k} , \alpha_{k} } \right), \left( {s_{l} , \alpha_{l} } \right)} \right]. \hfill \\ \end{aligned}$$ -
(2)
According to the Definition 2.5, we can get
$$\begin{aligned} &S(A_{i} ) = \frac{{\Delta^{ - 1} (s_{i} ,\alpha_{i} ) + \Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )}}{2}; \hfill \\ &S(A^{ + } ) = \frac{{\Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s_{i} ,\alpha_{i} )) + \Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime}_{i} ))}}{2} \hfill \\ &S(A^{ - } ) = \frac{{\Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s_{i} ,\alpha_{i} )) + \Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime}_{i} ))}}{2}. \hfill \\ \end{aligned}$$Then, \(S\left( {A^{ - } } \right) \le S\left( {A_{i} } \right) \le S\left( {A^{ + } } \right)\) for all i. Since ATS-I2TLBM satisfies the idempotency, we have
$$\begin{aligned} A^{ + } = ATS - I 2TLBM{^{p,q}} (A^{ + } , A^{ + } , \ldots , A^{ + } )\;{\text{and}} \hfill \\ A^{ - } = ATS - I 2TLBM{^{p,q}} (A^{ - } , A^{ - } , \ldots , A^{ - } ). \hfill \\ \end{aligned}$$Besides, φ is a strictly decreasing function and ϕ is a strictly increasing function, we obtain
$$\begin{aligned} &A^{ - } = ATS - I2TLBM^{p,q} (A^{ - } ,A^{ - } , \ldots ,A^{ - } ) \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s_{i} ,\alpha_{i} )))} \right]} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime})) + q\varphi (\Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime})))} \right]} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad \le \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi} (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))])} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi} (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )) + q\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))])} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\&\quad \le \left[ \begin{aligned}& \Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s_{i} ,\alpha_{i} ))) + q\varphi (\Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s_{i} ,\alpha_{i} )))])} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime}_{i} ))) + q\varphi (\Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime})))])} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad= ATS - I2TLBM^{p,q} (A^{ + } , A^{ + } , \ldots , A^{ + } ) = A^{ + }. \hfill \\ \end{aligned}$$Thus, we have \(A^{ - } \le ATS - I 2TLBM^{p,q} (A_{ 1} , A_{ 2} , \ldots ,A_{n} ) \le A^{ + } .\)
-
(3)
According to the Definition 4.1, it has
$$\begin{aligned} &ATS - I2TLBM^{p,q} (A_{1} ,A_{2} , \ldots ,A_{n} ) \hfill \\ &\quad = \left[ {\frac{1}{n(n - 1)} \odot \left( {\mathop \oplus \limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} ([(s_{i} ,\alpha_{i} ),(s^{\prime}_{i} ,\alpha^{\prime}_{i} )]^{p} \otimes [(s_{j} ,\alpha_{j} ),(s^{\prime}_{j} ,\alpha^{\prime}_{j} )]^{q} )} \right)} \right]^{{\frac{1}{p + q}}}. \hfill \\ \end{aligned}$$If \(A_{{i}}^{\prime } = \left[ {\left( {s_{{\sigma(i)}} , \alpha_{{\sigma(i)}} } \right), \left( {s_{{\sigma (i)}}^{\prime } , \alpha_{{\sigma (i)}}^{\prime } } \right)} \right]\) is any permutation of \(A_{i} = \left[ {\left( {s_{i} , \alpha_{i} } \right), \left( {s_{i}^{\prime } , \alpha_{i}^{\prime } } \right)} \right] \, (i = 1, 2, \ldots ,n)\), then for any two interval-valued linguistic 2-tuples Ai and Aj, we have \(k, l \in \{ 1, 2 ,\ldots ,n\} ,\) such that \(A_{i} = [(s_{i} ,\alpha_{i} ),(s^{\prime}_{i} ,\alpha^{\prime}_{i} )] = [(s_{\sigma (k)} ,\alpha_{\sigma (k)} ),(s^{\prime}_{\sigma (k)} ,\alpha^{\prime}_{\sigma (k)} )] = A^{\prime}_{k}\) and \(A_{j} = [(s_{j} ,\alpha_{j} ),(s^{\prime}_{j} ,\alpha^{\prime}_{j} )] = [(s_{\sigma (l)} ,\alpha_{\sigma (l)} ),(s^{\prime}_{\sigma (l)} ,\alpha^{\prime}_{\sigma (l)} )] = A^{\prime}_{l} ,\) then,
$$\begin{aligned} &ATS - I2TLBM^{p,q} (A_{1} ,A_{2} , \ldots ,A_{n} ) \hfill \\ &\quad= \left[ {\frac{1}{n(n - 1)} \odot \left( {\mathop \oplus \limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} ([(s_{i} ,\alpha_{i} ),(s^{\prime}_{i} ,\alpha^{\prime}_{i} )]^{p} \otimes [(s_{j} ,\alpha_{j} ),(s^{\prime}_{j} ,\alpha^{\prime}_{j} )]^{q} )} \right)} \right]^{{\frac{1}{p + q}}} \hfill \\ &\quad = \left[ {\frac{1}{n(n - 1)} \odot \left( {\mathop \oplus \limits_{\begin{aligned} k \ne l \\ k,l = 1 \end{aligned} }^{n} ([(s_{\sigma (k)} ,\alpha_{\sigma (k)} ),(s^{\prime}_{\sigma (k)} ,\alpha^{\prime}_{\sigma (k)} )]^{p} \otimes [(s_{\sigma (l)} ,\alpha_{\sigma (l)} ),(s^{\prime}_{\sigma (l)} ,\alpha^{\prime}_{\sigma (l)} )]^{q} )} \right)} \right]^{{\frac{1}{p + q}}} \hfill \\ &\quad = ATS - I2TLBM^{p,q} (A_{1}^{\prime } , A_{2}^{\prime } , \ldots ,A_{n}^{\prime } ). \hfill \\ \end{aligned}$$ -
(4)
According to the concept of Archimedean t-norm and s-norm, we know φ is a strictly decreasing function and ϕ is a strictly increasing function. Applying Theorem 4.1, we obtain that
$$\begin{aligned} &ATS - I2TLBM^{p,q} (A_{1} ,A_{2} , \ldots ,A_{n} ) \hfill \\ &\quad = \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} \phi \left( {\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))} \right]} \right)} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} \phi \left( {\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )) + q\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))} \right]} \right)} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad \ge \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} \phi \left( {\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (s_{i}^{ * } ,\alpha_{i}^{ * } )) + q\varphi (\Delta^{ - 1} (s_{j}^{ * } ,\alpha_{j}^{ * } ))} \right]} \right)} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} \phi \left( {\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (s_{i}^{ * \prime } ,\alpha_{i}^{ * \prime } )) + q\varphi (\Delta^{ - 1} (s_{j}^{ * \prime } ,\alpha_{j}^{ * \prime } ))} \right]} \right)} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad= ATS - I 2TLBM^{p,q} (A_{1}^{*} , A_{2}^{*} , \ldots ,A_{n}^{*} ). \hfill \\ \end{aligned}$$Thus, the proof of Theorem 4.2 has been finished. □
Rights and permissions
About this article
Cite this article
Liu, X., Tao, Z., Chen, H. et al. A New Interval-valued 2-Tuple Linguistic Bonferroni Mean Operator and Its Application to Multiattribute Group Decision Making. Int. J. Fuzzy Syst. 19, 86–108 (2017). https://doi.org/10.1007/s40815-015-0130-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-015-0130-4