Abstract
In the view of the problem of designing and optimization of interval type-2 fuzzy logic controller (IT2 FLC) for Delta robot trajectory control, a systematic design method is put forward in this paper. A type-1 fuzzy logic controller (T1 FLC) is designed and optimized. Then, three kinds of method to blur the T1 fuzzy membership functions are proposed to generate IT2 fuzzy sets from the optimized T1 fuzzy sets. A systematic analysis is carried out to study the relationship between blur methods, blur degree and output control surface of IT2 FLC. Output signal enhance coefficient is proposed to make sure the IT2 FLC to provide enough output signal. The optimized IT2 FLC is validated through a set of simulations and by comparing against its type-1 counterpart in the presence of external and internal uncertainties. The simulation results show the optimized IT2 FLC can provide better trajectory tracking performance.


















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Pathmanathan, E., Ibrahim, R.: Development and implementation of fuzzy logic controller for flow control application. In: 2010 International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, 2010, pp. 1–6
Kehtarnavaz, N., Nakamura, E., Griswold, N., Yen, J.: Autonomous vehicle following by a fuzzy logic controller. In: Fuzzy Information Processing Society Biannual Conference, 1994. Industrial Fuzzy Control and Intelligent Systems Conference, and the NASA Joint Technology Workshop on Neural Networks and Fuzzy Logic, San Antonio, TX, 1994, pp. 333–337
Hilloowala, R.M., Sharaf, A.: A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme. IEEE Trans. Ind. Appl. 32, 57–65 (1996)
Abdullah, S.R.S., Mustafa, M.M., Rahman, R.A., Imm, T.O.S., Hassan, H.A.: A fuzzy logic controller of two-position pump with time-delay in heavy metal precipitation process. In: 2011 International Conference on Pattern Analysis and Intelligent Robotics (ICPAIR), Putrajaya, 2011, pp. 171–176
Ying, H., Siler, W., Buckley, J.J.: Fuzzy control theory: a nonlinear case. Automatica 26, 513–520 (1990)
Yahyaei, M., Jam, J.E., Hosnavi, R.: Controlling the navigation of automatic guided vehicle (AGV) using integrated fuzzy logic controller with programmable logic controller (IFLPLC)—stage 1. Int. J. Adv. Manuf. Technol. 47, 795–807 (2010)
Xia, Z., Li, J., Li, J.: Delay-dependent non-fragile H∞ filtering for uncertain fuzzy systems based on switching fuzzy model and piecewise Lyapunov function. Int. J. Autom. Comput. 7, 428–437 (2010)
Su, K., Huang, S., Yang, C.: Development of robotic grasping gripper based on smart fuzzy controller. Int. J. Fuzzy Syst. 17, 595–608 (2015)
Nguyen, V.B., Morris, A.S.: Genetic algorithm tuned fuzzy logic controller for a robot arm with two-link flexibility and two-joint elasticity. J. Intell. Robot. Syst. 49, 3–18 (2007)
Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic System: Introduction and New Directions. Prentice Hall PTR, Upper Saddle River (2001)
Fu, K.S., Tou, J.T., Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. In: Fu, K.S., Tou, J.T. (eds.), Learning Systems and Intelligent Robots, pp. 1–10. Springer, US (1974)
Mendel, J.M., John, R.I., Feilong, L.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14, 808–821 (2006)
Zaheer, S.A., Jong-Hwan, K.: Type-2 fuzzy airplane altitude control: a comparative study. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), Taipei, 2011, pp. 2170–2176
Tinkir, M., Onen, U., Kalyoncu, M., Botsali, F.M.: PID and interval type-2 fuzzy logic control of double inverted pendulum system. In: 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, 2010, pp. 117–121
Ping-Zong, L., Chun-Fei, H., Lee, T.-T.: Type-2 fuzzy logic controller design for buck DC–DC converters. In: The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ’05, Reno, NV, 2005, pp. 365–370
Hagras, H.A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12, 524–539 (2004)
Biglarbegian, M., Melek, W.W., Mendel, J.M.: On the stability of interval type-2 TSK fuzzy logic control systems. IEEE Trans. Syst. Man Cybern. B 40, 798–818 (2010)
Qilian, L., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8, 535–550 (2000)
Hsiao, M., Li, T.S., Lee, J.Z., Chao, C.H., Tsai, S.H.: Design of interval type-2 fuzzy sliding-mode controller. Inf. Sci. 178, 1696–1716 (2008)
Cortes-Rios, J.C., Gomez-Ramirez, E., Ortiz-de-la-Vega, H.A., Castillo, O., Melin, P.: Optimal design of interval type 2 fuzzy controllers based on a simple tuning algorithm. Appl. Soft Comput. 23, 270–285 (2014)
Martínez, R., Castillo, O., Aguilar, L.T.: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 179, 2158–2174 (2009)
Castillo, O., Aguilar, L., Cázarez, N., Cárdenas, S.: Systematic design of a stable type-2 fuzzy logic controller. Appl. Soft Comput. 8, 1274–1279 (2008)
Martínez-Soto, R., Castillo, O., Aguilar, L.T.: Type-1 and type-2 fuzzy logic controller design using a hybrid PSO–GA optimization method. Inf. Sci. 285, 35–49 (2014)
Wu, D., Wan Tan, W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19, 829–841 (2006)
Linda, O., Manic, M.: Uncertainty-robust design of interval type-2 fuzzy logic controller for Delta parallel robot. IEEE Trans. Ind. Inform. 7, 661–670 (2011)
Castillo, O., Cazarez, N., Melin, P.: Design of stable type-2 fuzzy logic controllers based on a fuzzy Lyapunov approach. In: 2006 IEEE International Conference on Fuzzy Systems, Vancouver, BC, 2006, pp. 2331–2336
Kumbasar, T., Hagras, H.: A self-tuning zslices-based general type-2 fuzzy PI controller. IEEE Trans. Fuzzy Syst. 23, 991–1013 (2015)
Wu, D.: On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 20, 832–848 (2012)
Linda, O., Manic, M.: Evaluating uncertainty resiliency of type-2 fuzzy logic controllers for parallel Delta robot. In: 2011 4th International Conference on Human System Interactions (HSI), Yokohama, 2011, pp. 91–97
Shi, B.P., Han, S.K., Changyong, S., Kyunghwan, K.: Dynamics modeling of a Delta-type parallel robot (ISR 2013). In: 2013 44th International Symposium on Robotics (ISR), Seoul, 2013, pp. 1–5
Hirano, J., Tanaka, D., Watanabe, T., Nakamura, T.: Development of Delta robot driven by pneumatic artificial muscles. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Besacon, 2014, pp. 1400–1405
Afroun, M., Chettibi, T., Hanchi, S.: Planning optimal motions for a Delta parallel robot. In: 14th Mediterranean Conference on Control and Automation, 2006. MED’06, Ancona, 2006, pp. 1–6
Dongrui, W., Mendel, J.M.: Enhanced Karnik–Mendel algorithms. IEEE Trans. Fuzzy Syst. 17, 923–934 (2009)
Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer, New York (2010)
Ko, C., Wu, C.: A PSO-tuning method for design of fuzzy PID controllers. J. Vib. Control 14, 375–395 (2008)
Acknowledgments
The authors would like to thank the editors and unnamed reviewers for their valuable comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lu, XG., Liu, M. & Liu, JX. Design and Optimization of Interval Type-2 Fuzzy Logic Controller for Delta Parallel Robot Trajectory Control. Int. J. Fuzzy Syst. 19, 190–206 (2017). https://doi.org/10.1007/s40815-015-0131-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-015-0131-3